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S~FOREWORD

iI

S" This paper presents the results of a study undertaken

to develop methods for ordering a.ld organizing technical,

social, economic and other data that can be presented in array

•.form. The study leading to the development of this report

• was conducted as independent research at the Institute for

iii.[,Defense Analyses. The theory and development of the

algorithms described in this paper are the work of members of

the Systems Evaluation Division.
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1. INTRODUCTION

L Since the introduction of the large digital computers, methods of multivariate analysis'
are being developed that utilize more effectively the computational resources and character-
istics of the computer than some of the more conventional and established statistical tech-[2! niques. These new methods are being employed because it is now possible to undertake data
analysis problems in considerably greater detail than was previously feasible. A class of
techniques that is able to account for detailed individual relationships as well as macroscopic
data structure is exemplified by the cluster-seeking2 methods. Ball (Ref. 1) has accurately
pointed out that many classical statistical techniques depend heavily on statistical quantities

estimated from the data and that this "averaging" from the data can sometimes lead to
erroneous conclusions. This is simply because microscopic variations in the data cannot, in
general, be detected from the statistical quantities estimated with the result that small but
significant information can be overwhelmed and even lost under the pressure of larger
sLatistical trends. Furthermore, many of these classical techniques such as principal component
analysis (Ref. 28) or factor analysis (Ref. 28) implicitly assume data distributions that are not
always present. Thus, it appears that there is a definite need for better direct analysis

techniques so that it is not necessary to completely rely on funýtions of data or on
assumptions regarding their distribution.

This paper presents three new direct data analysis techniques that were developed at
the Institute for Defense Analyses. One of the algorithms, the Bond Energy Algorithm, shares
a few of the same objectives as some of the other cluster-seeking techniques (Refs. 2 throu0-
20) but has several important differences and advantages. The Moment Ordering Algorithm has
as its principal goal the disovery of a single dominant relationship in the data, while the
Moment Compression Algorithm attempts to factor the data into separable pieces or clusters.

Two important characteristics that all three of these methods share is that they operate
directly on the nrn-negative raw input matrix data and that they reorganize atid reorder the
matrix data by performing row and column permutations in order to reveal obscure and

1. Multivulate A"piysa includes s"ch vatheiatiaoe techakiql.a u Repeouion Asaaly-b, Fact Anaayls. Prncipal
Compoaet Analysis. Canonical Analysis, Cuslta Ar..yals, etc.

2. au" Seek twAi in thoue data amalysls method. which seek to Wanty poupe ot shnlls entfitk
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potentially informative data patterns. The output of all these alorithms, then, is a new data
matrix with its resulting new ordering.

In Chapter II, the most important features and characteristics of each of the three
algorithms will be briefly described. Then, in Chapter Ill, the major results and conclusions of

this study will be presented. Part 11 of this paper contains a detailed description of the theory

and development of the three algorithms along with a number of pertinent examples which

illustrate the favorable characteristics and general applicability of these methods.
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IIM . DESCRIPTION AND OBJECTIVES OF THE THREE ALGORITHMS

In this chapter the three data ordering algorithms are briefly described and their
objectives are compared. More detailed description of the theory and development of these
algorithms, along with a number of applications, will be found in Part 11.

A. THE BOND ENERGY ALGORITHM'

The Bond Energy Algorithm' is capable of identifying and displaying natural groups
and clusters that occur in complex data matrices. Moreover, the algorithm is able to uncover
and display the associations and interrelationships of these groups with one another. These
tasks are accomplished through the use of a numerical measure of how clustered or clumpy3 a
matrix is. The proposed measure of effectiveness (ME) attains its maximum value when the
matrix assumes a very clumpy or aggregated form. It has beer found that the structures and
relationships existing in data matrices more clearly exhibit themselves when the matrices are
presented in more aggregated forms corresponding to larger MEs.

The ME is defined as follows. Assume that the matrix of relationships (or transactions,
flow, etc.) has dimension M by N with non-negative elements aU. The quantity Gjj is defined
as!'as4

}:-• Cij •a ' ai + l,j + ai - ,j + ai,j + I + ai,j-I"

From Fig. 1 it ;an be seen that aij is just one half the sum of the horizontal and vertical

nearest neighbors of aU. The unnormalized ME can now be defined as

ME X aij aij
all iU

The ME clearly is equal to the sum of all the vertical and horizontal bond strengths in the
matrix where the strength of a bond between two horizontally or vertically adjacent elements

1. no theoy and deo•tlopaw of this atoulhm •ue du, to U, W.T. McColmick, Jr.

2. ThU atlouithm Ui wo v•Ucd bo~isusc its awcaiur of off.ctivcn'ts uwolwa product% of neaeusi •inlhbo maaui.
clemants that fmay be Ukewid to bond ten~thi

3 A clumpy matuix is one who" last elements lie ntt ot"e. laslit ce•ta. forming egpcptos callod clumps.

4. With t- o •- o-t ') 4i. a-'.., I a + 1 0- -...
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FIGURE I. Representation or Bond Energy ME

is defined as the product of the elements. A slightly more general form of this ME is presented
in the m~ore detailed desciiption in Part It of this paper.

STo obtsin maximum "cumpiness" of the matrix it is necessary to maximize the ME
over all1 row pe.-,.,utations and column permutations oi the matrix, i.e.,

max
all row perm ~ME ab
& col ierm all ii

This problem can be formulated equivalently as two quadratic assignment problems$ and its -

optimal solution can be determined. However, this rigcerous, solution is quite time consuming

so a suboptluial algotithm has been developed. The suboptimnal algorithm is a sequential
selection procedure that has proven to be efficient and rapid. The description and details of
this technique are contained w~ Chapter I of Part 11.

A simple example will illustrate the sensitivity of the ME and theD utility of a
rearan~gement of tite miatrix data. Suppose we have a symmetric matrix bhowing certain -

associations or relationships between entitles A, 13, C and D. The initial relationship matrix is
shown in Fig. 2a, where the ones in the ijth elements of the maitrix represent the existence of
veationships between enti~es i and J and the zeros indicate the absence of relationships. It is
clear from the definition of the ME anid the obst~rvation that there are no bonds, that the ME,
o for the matrix in Fig. 24. Figures 2b, 2c, 2d, and 2e show progressively greater levels of

[-°

clunipiness and their MEs are 2, 4, 6, and 8, respectively. Appllcatit)n of the Bond Energy
Algorithm pro~duces the ordering shown in Fig. 2e, where it is clear that two clusters have been

S. So Appeadi A.
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A B C D A B C D
"A 1 0 10 A 1 0 1 0
B 0 1 0 1 B 0 1 0 1
C 1 0 1 0 D 0 1 0 1
D 0 0 1 C 1 0 1 0

'1 FIGURE 2a. ME=O FIGURE 2b. ME=2

• A b C D A C B D

A 1 0 1 0 A I 1 0 0
C 1 0 1 0 B 0 0 I 1
"B 0 1 0 1 D 0 0 1 1
D 0 1 0 1 C I 1 0 0

FIGURE 2c. ME=4 FIGURE 2d. ME=6

A C B D
•lA I 1 0 0

• C I 1 0 0

. B 0 0 1 1

N" FIGURE 2e. ME=8

FIGURE 2. Illustration of the Sinsitivity of the Bond Energy ME

uncovered and in fact the entities have cee.n factored into two unrelated and distinct groups
(i.e., A. C and B. D).

1This simple example gives an indication of how the Bond Energy Algorithm can
produce clearer itd deeper understanding of the matrix data by simple rearrangement.

1'7



B. THE MOMENT ORDERING ALGORITHM"

The purpose of the Moment Ordering Algorithm is to identify the single dominant

relationship in an array of data, and to reorder the rows and columns of the array to produce a

ranking under this dominant relationship. That is to say, the algorithm finds the principal axis7

for the data, and arranges both the rows and the columns according to the implicit underlying

variable corresponding to the axis. The concept may be made clearer by considering the two

examples discussed in Part II. One example involves the distribution of pottery types hi a

group of archeological sites. The underlying variable is the age of the site, and the algorithm

therefore produces a chronological ordering of the sites. The second example involves the

voting patterns of a group of Senators. The algorithm determines that the underlying variable -

is the degree of liberalism/conservatism, and therefore orders the Senators (and the bills voted 4

upon by them) along a liberal/conservative spectrum.

The underlying idea behind the algorithm is the fact that if two rows are very similar to "L

each other their mean row moments should be close to each other in value. The mean row --

moment x1 of the ith row is defined as

N Nxi =Jaij .
j=l 31

where aij is the ijth element in the array. Similarly, if two columns are closely related, their

mean column moments, defined analogously, should be close in value. The algorithm, then, is

an attempt to use these moments to rearrange the array so that rows (or columns) are as near

as possible to other similar rows (or columns).

The algorithm begins by computing the row moments for the array in its initial state.

and placing the rows in ascending order of their moments. The column moments are then

calculated, and the columns reordered according to their moments. This reordering, however,

changes the values of the row moments. The row moments are therefore recalculated and the

rows reordered. The procedure is continued, alternating between row and column reorderings,

until an ordering is reached in which both the rows and columns are arranged in order of their

moments. Such a stable state is considered a solution. The principal output of the algorithm is

then the one-dimensional ordering of the entities on the array axes on the basis of whatever

dominant relationship may exist in the data.
44

6. The initial Idea for this algoeIthm and tot this rewcasuh paper Is due to Dr. John J. Martn. The algovithm was

ImUioved and developed by Dr. Stephen B. Deutsch.
7. A puincipal axis may be thought of as an• u•elylq vaziablo" by man of which the Oep~it Vlab• can be

lsted in a oa&Lme W oadedin j
8
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As an example of how the Moment Ordering Algorithm operates on a sample data
array, consider the relationship matrices given in Fig. 3. When the algorithm is applied to the
data array of Fig. 3a, the new array shown in Fig. 3b is obtained. Similar rows are now
adjacent to each other, and the overall ordering of the rows reflects their placement along the
principal axis of the array. Note the concentration of the non-zero elements along the main
diagonal of the new array. This concentration is a property of solutions found by the
algorithm. The details of this method and some examples which have been successfully
handled are presented in Part II.

4 A B C DE D B A E C
AA 1 1 0 0 1 D I 1 0 0 0

B I 1 0 1 0 B 1 I 1 0 0
C 0 0 1 0 1 A 0 1 1 1 0
D 0 1 0 1 0 E 0 0 1 1 1
E 1 0 1 0 1 C 0 0 0 1 1

FIGURE 3a. FIGURE 3b.

1I- 12-69-5

FIGURE 3. An Example of the Moment Ordering Algorithm

C. THE MOMENT CO)MPRESSION ALGORITHM8

The Moment Compression Algorithm is designed to identify natural groups and clusters
"of entities by factoring the data relationship matrix into a number of pieces. The algorithm
"accomplishes this by finding the data ordering wl',:h minimizes a specific ME. The ME used by
the Moment Compression Algorithm is just the sum of all the row and column second
moments about their respective means, that is

M N
ME ri + C

where rI and cj are the ith row moment and jth column moment. The minimization of this ME
over all row and column permutations has the effect of compressing the data in such a way as
to force the non-zero matrix elements toward a block-factored fonn.

& la thmoey and devetpmam of ig iathm ar due to Dr. haul J. Schwetw.

9



This ME was devised because of the observation that the rows and columns of a matrix -r
in perfect block-factored form, when contrasted with the same matrix after row or column
permutations, have the smallest sum of the moments of inertia about their means. That is, any
row or column permutation of a matrix in perfect block form will "expand" a block and make
it less dense, thereby increasing the matrix's total moment of inertia. A matrix in perfect
block-factored form is shown in Fig. 4. [6

FIGURE 4. Matrix with Perfect Biock Form

The problem of ME maximization can be posed as two quadratic assignment problems;
however, in practice, it has been solved sub-optimally by an iterative gradient procedure
involving linear assignment problems.

When the Moment Compression Algorithm is applied to any of the matrix orderings of £
Fig. 2 the resulting ordering is the completely block-factored form shown in Fig. 2e. In this
special case when the matrix is completely block factorable, the Bond Energy and the Moment
Compression Algorithms will both produce block-factored form.

D. CONTRASTS AMONG THE THREE ALGORITHMS

In order to understand better exactly how the three algorithms differ, it is useful to
compare their objectives and their computational methods. £

The single objective of the Moment Compression Algorithm is to identify groups or
clusters by rearrangement of the matrix data. In addition to sharing this objective the BondI
Energy Algorithm has the additional objective of determining whether and in what manner
these groups are related to one another.' Computationally, the MEs of the two algorithms

9. See .d.. .a. bato w FI6. "
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differ substantially in that the Bond Energy ME depends on nearest-neighbor interactions

while the Moment Compression ME is completely global. A consequence of this difference is

that the Bond Energy ME more adequately describes the topological properties of clumpiness,
denseness and connectedness. Another consequence is the greater computational ease in

optimizing the Bond Energy ME by use of a rapid sequential selection algorithm which

exploits its nearest neighbor dependency.

The Moment Ordering Algorithm differs markedly from both of the previous data
ordering methods. Instead of attempting to identify groups, clusters or group interrelation-

ships, the main objective of the Moment Ordering Algorithm is to produce a one-dimensional

ordering of entities along the axes of the matrix. It accomplished this by finding a dominant

variable or principal axis along which these entities can be ordered. Computationally, like the
Monment Compression Algorithm, the Moment Ordering Algorithm employs moments which

are global matrix measures, and thus it is not as sensitive to local details as the Bond Energy

Algorithm. Its principal computational difference, though, from the Bond Energy and the
Moment Compression Algorithms is that it is a completely heuristic iterative technique that

does not attempt to optimize any measure of effectiveness.

A

J4

I111
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III. CONCLUSIONS

The following statements are the general assessments and conclusions regarding the
applicability, overall usefulness, and efficiency of the three algorithms developed for direct
analysis of multivariate syste-.is by matrix reordering.

0 The Bond Energy Algorithm proved to be the most generally useful and
versatile of the three algorithms for treating certain problems of multivariate
analysis. It is capable not only of classifying and clustering data but also of

successfully identifying areas of interrelationships that exist among these
clusters. It has been found to be an efficient and general approach to problems

involving clusters and group structures.

* The Moment Ordering Algorithm is an efficient technique for uncovering and
I. displaying a univariate relationship inherent in the data. That is, it is a fast and

direct method for uncovering the principal axis of a data structure. The

efficiency of the algorithm was found to be in direct proportion to its ultimate
success in identifying a principal axis. The primary utility of this algorithm is in

determining a good one-dimensional ordering of the data rather than in
uncovering clusters or group interrelationships in the data.

* The Moment Compression Algorithm is successful at identifying clusters and

groups inherent in the data. Both it and the Bond Energy Algorithm will put a
matrix into block form, if this is possible. However, the Moment Compression
Algorithm is slower and therefore le•s useful for large problems. Unlike the
Bond Energy Algorithm, the Moment Compression Algorithm cannot handle

the case of block-checkerboard' matrices arising from multilateral group

relationships. Consequently the Moment Compression Algorithm is considered
inferior to the Bond Energy Algorithm both with regard to computational

speed and versatility of iks measure of effectiveness.

I. Sf Fig. 6.

Preceding page blank
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I. THE BOND ENERGY ALGORITHM

A. MOTIVATION

The motivation for the development of the Bond Energy Algorithm was to be able to

treat a broader class of problems than that normally found in cluster analysis applications. In
addition, it was desired to operate directly on and manipulate the original data without
creating or losing information. The object is not only to classify and group similar entities but

also to determine how and by what means these groups are interrelated. This can be illustrated
by considering a symmetric binary (0-1) relationship matrix between N entities. If the N
entities can be separated into, say, four unique groups (unique meaning that the entities in one
group are related only among themselves and not with any entities outside their own group),
then many of the techniques of cluster analysis are applicable. In this case it is possible to
reorder the rows and columns of the input data matrix to obtain the form given in Fig. 5.

Z

ENTITY 1
ENTITY 2

X2/

ol
0 3 4I

ENTITY N

FIGURE 5. Relationship Matrix Showing 4 Unique Groups

However, if the entities are not completely factorable into unique groups then it is often
desirable to identify not only tho principal groups but also their significant areas of relation-
ship. In other words, it might be desirable to rearrange the data matrix to obtain a checker-
board pattern if it is possible. This type of pattern is shown in Fig. 6, where the off-diagonal
blocks of large Xs represent data clumps containing a sizable percentage of non-zero entries,
thus indicating partial or total intergroup relationships.

Preceding page blank 17
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ENTITY I
ENTITY 2 x X

W-

/2 X

S -x 3

X X 4 -
ENTITY N -7X
I 1-12-69-8 t

FIGURE 6. Relationship Matrix with Block-Checkerboard Form

The essential question is, given a matrix where the data are presented in an arbitrary manner,
how can the rows and columns of a matrix be simply rearranged to obtain as "clumpy" a T
matrix form as possible.

B. THE MEASURE OF EFFECTIVENESS

1. flefinition and Interpretations J

In order to analytically determine the "clumpiness" of a particular matrix, It was 1

necessary to develop some measure of effectiveness (ME) I of how any subsequently proposed
algorithm would progress. This ME must be sensitive to and depend on local clumpiness while
also characterizing the clumpiness of the entire matrix. The essential idea behind the ME,
which fulfills this requirement, came from likening the situation to that of the saturation of
bonds in the nucleus o: an atom. That is, when the nucleons are clumped together there is
total bond saturation in the interior of the nucleus while the bonds of the nucleons near the

surface are unsaturated. The intent was to find an ME which when maximized, resulted In as
few unattached or unbonded matrix elements as possible. The bond strength between two
adjacent matrix elements is defined as the l/kth power of the product of the matrix elements.
Maxhnization of the ME will maximize the sum of all the bond strengths, and therefore clump *
together the larger non-zero matrix elements. Another physical phenomenon that may be j
likened to this situation is that of water beads on a glass. The beads tend to aggregate into

1. A. am* ple dWa"%s" of ME. may be found in App.dx Q.

18



,TT

larger clumps in order to minimize the surface energy. The ME can be defined, then, as just the

sum of all the bond strengths in a matrix. Thus

MEk"a al/k a

44Jall ijU ij i•. where'

;!iLII kal/k l/k al/k al/kl
kaij iJ+l i,j- I i+lj i-ldJ

and k is a weighting constant, which is usually set equal to 2. The ME may be interpreted
mathematically as the sum of the scalar products (or projections on one another) of all the
contiguous row vectors3 plus the sum of the scalar products of all of the contiguous column

vectors 3

L! 2. Normalization of the ME

The ME defined above can be normalized so that its value varies between 0 and 1. This
J normalized measure of effectiveness (NME) is defined as

NMEk- I al/k a

allij ij k U

3 and 0 < NMEk <

where4. S is the normalization constant defined as

S 2 Xa~kU all ij

IS can be interpreted mathematically as the sum of the squares of the L2 norms' of all the row
and column vectors. The advantage in having a normalized ME is that it is easier to determine
how much improvement in the clumpiness of a matrix has been achieved since it is a measure

2 n. A~n- ,0-ald IJ * N.I-0
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of the amount of bond saturation. For instance, if the NME of the reordered data matrix
equals 0.6, whereas the NME of the initial data matrix equals 0.2, then it can be concluded
that there does exist a good deal of inherent group structure and interrelationship that was not
initially evident. Moreover, the final NIE gives an absolute measure of the existence of the
clusters that we have sought to uncover.

3. Advantages of the ME

The ME proposed above has some very important theoretical and computational
advantages which will be enumerated here.

*The NME can be used for matrices of any size or shape. In addition, symmetry
of the matrix is not required. The only restriction is that the matrix elements
be non-negative, real numbers. 2

a Since the vertical (horizontal) bonds are unaffected by interchange of the
columns (rows), the ME decomposes into two parts; one (sum of the vertical
bonds) dependent only on row permutations, and the other (sum of the
horizontal bonds) dependent only on column permutations. Consequently 2i
optimization of the ME can be achieved in exactly two passes, one finding the
optimal column permutation, the other finding the optimal row permutation.

SThese two passes can be carried out completely independently of each other.

In particular, it is not necessary to alternate between row and column permu-
tations, as in the Moment Ordering Algorithm, thus eliminating the possibility
of any cycling' of the solution.

a Since the contribution to the ME from any culumn (or row) is only affected by
the two adjacent columns (or rows), the optimization lends itself very well to a
multistage sequential selection process.

eThe Bond Energy ME optimization does not require any prior prejudices, such
as forcing the data into clumps along the diagonal or forcing the data into
block-diagonal form. The representation of the data that is sought is a tight
clumped form and so the maximization of the ME might very well allow the
possibility of far outlying elements in order to achieve globally higher degree of r
compactness. Tnhis feature is particulk rly important in the case of multilateral
relations between groups of entities where it is clearly not possible to obtain a
block-diagonal form. j

S. This idsmasacu. occus O the uutoo slu uitne•my bettor thea %woa.

20

r',

= - - - - -



eThe 1/k power 6 of aij appearing in the expression for the ME allows any desired

weighting of the larger matrix elements.

C. THE SOLUTION: MAXIMIZATION OF THE ME

1. The Fxact Solution

The problem to be solved as implied earlier is to maximize the ME over all row and

column permutations. That is,

Max {I al/k al/k + al/k
rt•i,j l r() 0,0 ) 0-)

+ al/k + al/k
jr(i + 1), 00j) r(i - 1), 00j)

where 7r= i •2(1), ir (2),... , r(M)I and • $ (1), (2),.. . ,(N)

are the row and column permutations. This can be thought of physically as maximizing the

sum of all the bond energies and mathematically as maximizing the sum of all the scalar

products of contiguous row vectors and column vectors. This maximization problem can be

stated equivalently as two quadratic assignment problems (the reader is referred to Appendix

A for the detailed formalism). The first seeks a permutation of the columns of [aij] which

maximizes the row bond energy, the other seeks a permutation of the rows of [ail which

maximizes the column bond energy. These optimizations may be viewed as two clustering

procedures, one which" reorders the rows on the basis of their similarity (similarity being

measured by the scalar product of the two rows), the other reordering the columns. Reas-

sembling the matrix after both clusterings produces the dense blocks shown in Fig. 6.

Although quadratic assignment problems can be solved exactly as well as approximately (for

exact and approximate methods see the references listed in Appendix A), the solution of this

problem requires a large amount of computer time in either case. Our own approximate

sequential selection algorithm has been developed which takes advantage of the nearest

neighbor properties of the measure of effectiveness.

2. Apoximate Solution

a. Description of the Sequential Selection A 1gorithnL The suboptimal algoritlun which

has been actually used to determine local optima of the ME is as follows:

6. Th w•Wy of tM MEI to t- td Of is iWt AtLPCtaadGQ
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(1) Compute and store the scalar products of each row with every other

row and each column with every other column.
(2) Select any column to begin the selection process, Set i=l.
(3) Next, try each of the remaining N-I columns placed alongside the first

column and compare its contribution' to the horizontal bond ME.
(4) Place alongside the first column that particular column which gives the

largest contribution to the ME. A
(5) Continue the process at the ith step by comparing the contribution to

the ME by placing each of the N-i remaining columns in each of the i+l -

possible positions," and putting the one which gives the largest con-

tribution to the ME in its proper place.
(6) After the process is completed by placing the last remaining column in

its "best" place, then the entire procedure (items 2 through 5) is

repeated on the rows. It is, however, not necessary to repeat the
procedure on the rows if the initial input matrix is symmetric since the

final resulting row order will be identical with the column ordering,

yielding a symmetric matrix.

b. Advantages of the Algorithm. The algorithm described above has several attractive
advantages which are noted here.

(1) Since the algorithm is finite and non-iterative, there are no convergence

problems.

(2) The algorithma will always reduce a matrix to pure block form if it is

possible to obtain this form by row and column permutations (see

Appendix B for proof).
(3) The solution obtained from the algorithm is independent of the input j

order of the rows (or columns) but is only dependent on the initial row
(or column) chosen to start the sequential selection process.

(4) The results of the algorithm are very insensitive to the ,c.aring point

(i.e., starting rcw or column), hence any solution is a "good" one (see

Table 2).

(5) The computation time for the algorithm depends only on the size of

the matrix an'i not on its elements.

(-5) The algorithm uses no thresholds or filtering during its operation which
can alter its course and affect the final result.

(7) Only the raw input data matrix is used to determine the new row and j
column orderings&

7. The Wonuiboutift is.u th4 d4ot pioduct of the chown colwtm vWctw with the fUst woun ve0tot.
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3. An Example

A simple example taken from Principles of Numerical Taxonomy (Ref. 15) will
illustrate how the algorithm can identify the clusters and their interrelationships. The

similarity matrix of Fig. 7 is given where a numerical value of 5 in element ij indicates a high
degree of similarity between entity i and entity j, and 0 indicates no similarity.

A B C D E F G H I J

A 5 4 1 0 4 1 10 3 1
B 4 5 0 1 3 1 1 0 4 1

•i:C 1 0 5 0 1 3 3 0 1 2Dl D 1 0 5 0 0 0 4 0 1

E 4 3 1 0 5 1 0 0 4 1
F 1 1 3 0 1 5 3 0 1 3:•I :G 1 1 3 0 0 3 5 0 1 2

H 0 0 0 4 0 0 0 5 1 0
1 3 4 1 0 4 1 1 1 5 1, J 1 1 2 1 1 3 2 0 1 5

•:: : I I12-69-9

FIGURE 7. Initial Non-Binary Similarity Matrix
By applying the algorithm described above, a new axis ordering and a new matrix are obtained
and are shown in Fig. 8.

H D B A E I J F G C

H 5 4 0 0 0 1 0 0 0 0
D 4 5, 1 0 0 0 1 0 0 0
B 0 1 5 4 3 4 1 1 1 0
A 0 1 5 4 3 4 1 1 1

E 0 0 3 4 5 4 1 1 0 1
I 1 0 4 3 4 5 1 1 5 1
J 0 1 1 I 1 1 5 3 2 2

F 0 0 1 1 1 1 3 5 3 3
4GO 0 11 1 0 1 2 3 5 3SC 0 0 0 1 1 1 2 3 3 5

FIGURE 8. Reordered Non-Binary Similarity Matrix

It is easy to identify three major diagonal blocks of large numbers representing three clusters
or groups of entities. H and D constitute the fWst group, B, A, E and I the second group, and J.

23
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F, G and C the third group. From the grouping of the smaller off-diagonal elements it is

evident that there is some weak relationship between the second and third groups but
essentially no relationship between the first group and either of the other two. It is also quite
apparent from this example that this new form for the matrix data conveys more information
concerning the group structure and relationships thaa does the originai matrix form.

D. OPERATION OF THE ALGORITHM

1. Computing Time Requirements

If the original data matrix is of dimension M by N, then the total number of arithmetic

operations necessary to perform all the initial row and column dot products is just:
M -I N-I

Operations = N • i + M "i or,
i1 j=l.

Operations = N M(M-) +M N(N ) or2 2

for large M and N,

Operations ; M2N + N2M
2

At step i of the algorithm, it is necessary to compare the contribution of the ME of all the
remaining N-i unplaced columns in the i+l possible positions, thus the total number of column

compari.sons equals 7
N-I N-I

(i+ l)(N-i) = D iN-i 2 + N-iif! i=l

N3

Sfor large N.

Similarly it requires approximately M3/6 comparisons for the rows. Thus for a square matrix,
the computation time of the algorithm goes as N3 . This theuretical variation in the compuung
time has been borne out experimentally as can be seen in Table 1. The computing time, in
seconds is given for various size problems (times given are for a single start, iig point).

9. On CDC 1404 coaptaa uAia Uoivwdly a of Mausuft Qoup&I
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Table 1. BOND ENERGY ALGORITHM COMPUTATION TIME

N M Time

21 21 11 sec
29 29 23 sec
48 48 124 sec

From this data a scaling law can be derived which gives the required computation time

in seconds for a given size square matrix, for a single starting point.

Computation Time (see)= 0.0012 N3

2. Ties

It occasionally happens that ties occur during the course of the sequential selection

algorithm. Ties between rows and columns -an occur in the following ways:

(1) Tic arising from putting the same as yet unplaced column (or row) in

two or more possible positions.

(2) Tie arising from putting different as yet unplaced columns (or rows) in

the same positions.

(3) Ties arising from putting different as yet unplaced columns (or rows) in

different possible positions.

We have no present criterion for deciding how to break ties arising from condition (I), nor is it

known whether there is reason to select one alternative over the others. Ties arising from

conditions (2) and (3) are broken by selecting the unplaced row or column which has the

shortest length in the L2 norm."0 Thinking in terms of the ME mathematically, if we can

obtain the same scalar products or projections witti two vectors, then the shorter should be

used rather titan the larger one. This tie-breaking mechanism has been found to work

satisfactorily in that it leads to informative final data arrangements.

3. Effect of Starting Point

Although the results of the algorithm do not depend on the order in which the rows

and columns are considered, there is a difference in the final results depending on which row

or colunat is selected to start the multistage decision process. In the example presented in Figs.

7 and 8, the problem was started 10 times, beginning once with each column. Table 2 gives the

frequency of occurrence and final M E for each distinct solution.

30. T1h isjuid w IqUa.U toot ot tc sum of the squma.o of all tht dmeuta'i of tks vetol,
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TableZ2 FREQUENCY DISTRIBUTION OF ME

Solution No. Frequency ME

1 3 419
2 3 419
3 1 414
4 2 414
5 1 412 -

Several significant facts may be noted from these results. First of all, the solutions with the

highest ME, 419, which are believed to be the globally optimitm solutions, occur 60 percent of -

the time. The difference between the best and worst solution is only 7 out of over 400, or less I
than 2 percent. A noteworthy point here is that the final "solution" (ME) depends very
weakly on the starting point and even the worst "solution" is not very far from the optimal

solution. With regard to the final group structure, it has been found that the various near

optimal solutions do not differ significantly from the optimal solution. The various solutions
are due to the rearrangement of the entities within a cluster group and the reordering of the I
groups themselves. These results have been confirmed by experimentation on significantly

larger matrices.

4. Formatting Data

The input format for the data can be in any matrix form. This means that the Bond

Energy Algorithm permits analysis of the raw data without forming a similarity matrix.- For

example, suppose we have an object-attribute matrix and we desire to find out which objects

are similar. The advantage of performing the grouping directly upon the object-attribute

matrix, rather than upon the similarity matrix, is that it is now possible to determine which -

attributes characterize a particular group of objects (see example 4).

E. APPUCATIONS

Several applications of this method have already been attempted and others have been

suggested. It appears that the algorithm is applicable to a wide class of problems, a number of

wnich will be enumerated he.

(I) Identification of natural groups and subgroups within data. A
(2) Identification of relationships and dependencies between groups.

(3) Relationships of groups of attributes to groups of objects.

(4) Examining influence relationships and structures via nonsynimntrical

data matrices.

I11. A doley matlx is I %yMMtL, X WMO Q ith Ckment ia mum@ of the almilaity ot entity I to entity J.

ApOYhuq the Blond Enew~ Aijoithis to a udMilaiftY fauti' ideal1fl (As tbe dW[O bWosk ths MAWm PoP&a Of
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(5) A1nalysis of hierarchical clustering and grouping via quantified numeri-
cal relationships.

(6) Factoring of large linear assignment problems (Ref. 32).
(7) Factoring of large management problems to identify optimal subtasks.
(8) Clustering of correlation matrices. 4,
i (9) Solution of traveling salesman problems (Ref. 31).

S(10) Unscrambling flow graphs and network relationships.

F. EXAMPLES

A number of examples are presented in the following paragraphs to illustrate the
operation and the potential application of the Bond Energy Algorithm. It should be clearly
understood that the algorithm operates on matrices that contain "hard" numerical entries and
therefore considers each data matrix to be an exact representation of the relationships
involved. We feel, nevertheless, that the algorithm has application for problems involving
"soft" data (Airport example) as well as "hard" data (Hindi consonant example), as long as
proper care is taken to judiciously weigh the results subject to the degree of validity of the
input information.

1. Example 1

Bonner (Ref. 3) has presented several clustering techniques which uncover group
structure in matrix data. For this example, the Bond Energy Algorithm is applied in several
different ways to illustrate its advantages and directness for gathering similar data into clusters.

The objects which will be clustered are defined by a set of attributes which characterize them.

Bonner presents a binary description of an object set as an object-attribute matrix
which is shown in Fig. 9. ATTRIBUTE NUMBER

1 2 3 4 5 6
I 1 0 0 2 0 0

2 1 1 0 1 0 0
3 0 0 1 1 I 1

OBJECT NUMBER 4 0 1 1 0 0 1
5 1 0 0 1 1 0
6 0 0 1 0 1 0
7 0 I 0 1 0 1

8 1 1 0 0 0

FIGURE 9. Initial Binary Object-Attribute Matrix

27S.j
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He then proceeds to form a similarity matrix P, where the PU are defined as

Cif
= +ii + CU

and Cij is the number of attributes which are "one" for both object i and object j. The
similarity matrix corresponding to Fig. 9 is shown in Fig. 10. A threshold T-0.45 is then used

to convert the fractional similarity matrix of Fig. 10 to a binary similarity matrix by setting
those matrix elements to one whose values are greater than 0.45 and the rest equal to zero.

This similarity matrix is shown in Fig. 11. Banner then uses this similarity matrix as a starting
point for several clustering techniques.

OBJECT NUMBER
1 2 3 4 5 6 7 8

1 1 2/3 1/5 0 2/3 0 1/4 1/4 "A
2 1 1/6 1/5 2/4 0 2/4 2/4
3 1 2/5 2/5 2/4 2/5 1/6
O4 1 0 1/4 2/4 2/4 1OBJECT NUMBER 51 1A 1/5 1 1/4 1/6 1/5 ,

6 1 0 1/4
7 1 1/5
8 1 1

I I - 1-69-1 2

FIGURE 10. Initial Fractional Object Similarity Matrix

OBJECT NUMBER

1 2 3 4 5 6 7 8 .

I 1 0 0 1 0 0 0

2 1 1 0 0 1 0 1 1
3 0 0 1 0 0 1 0 0

OBJECTNUMBER 4 0 0 0 1 0 0 1 1

5100100 0 I

FIGURE II. Initial Binary Similarity Matrix

The Bond Energy Algorithm has several advantags over Bonner's technique. First, it is

able to operate directly on the object-attribute matrix without forming a similarity matrix thus

permitting it to identify those particular attributes that characterize objects in the same

duster. Second, the application of the algoritlun will never result In a loss of information ,Ance

28
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the data are only rearranged. Finally, even using a similarity matrix the algorithm can produce

a reordering which not only displays the clusters but also their strengths and relationships.

These advantages will be demonstrated by successive application of the Bond Energy Algo-

rithm to the matrices of Figs. 9, 10 and 1i.

When the object-attribute matrix of Fig. 9 is rearranged by the Bond Energy

Algorithm, the new data matrix of Fig. 1 2 is obtained. When rectangles are constructed around

solid blocks of Is in two or more rows and columns, it can be seen that the objects fall into 4

"core" clusters: 3,6 and 2,1,5, and 4,7, and 8. It is also observed that attributes 3 and 5 are the

essential characterizing attributes of the 3,6 object cluster, attributes 4 and I are the

characterizing ones for the cluster containing objects 2,1 and 5. and attributes 2 and 6

characterize the cluster containing objects 4 and 7.

ATTRIBUTE NUMBER

4 1 2 6 3 5

8 0 1 I 0 1 0
-4 0 0 1 111 0
7 8 011 10 0

OBJECT NUMBER 2 1 1 1 0 0 0
± 10 0 0 0 0 0

S5 1 1 0 0 0 1
•63 ol 0 0 1J 1

6 0 0 0 0 1 1

FIGURE 12. Reordered Binary Object-Attribute Matrix

When the Bond Energy Algorithm is applied to the fractional object similarity matr~x

of Fig. 10, a new ordering is obtained. In this new ordering in Fig. 13,

OBJECT NUMBER

6 3 5 1 2 7 4 8

6 2/4_j

5 I T/3 2/4
1 2/3 1 2/3 •

OBJECT NUMBER 2 2/4 2/3 1 24 2/4

4• I 2 4 1 12/

FIGURE 13. Reordered Fractional Object Similarity Matrix
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only the larger elements (i.e., 1/2 or greater) are shown so that the clusters can be more easily
identified. Again, it is possible to identify the clusters and how they interrelate. Objects 3 and .
6 form a very tight independent cluster. Objects 5,1,2 form another tight cluster, although
there is a non-trivial relationship between object 2 and objects 7 and 8. Objects 4 and 7 form -

another cluster that is somewhaL related to objects 2 and 8. Thus, visually, this form of data
presentation is helpful and its computational requirements are very small (less than one
second).

When the Bond Energy Algorithm is applied to the binary similarity matrix of Fig. 1 1,,,
the result is given in Fig. 14. It is quite apparent that these results illustrate the same
relationships and clusters as those shown in Fig. 13, but are inferior since the strengths of the -
relationships are not shown. This illustrates that while Bonner's filtering technique leads to the,,
uncovering of major clusters, it also loses information present in the original data matrix.

OBJECT NUMBER ,

3 .. 3 6 1 5 2 7 4 8

II

3 1 I 0 0 0 0 0 0

1 0 0 1 1 T 0 0 0
O ECNUBR 5 0 0 1 1 1 0 0 0

47 00 0 0 0 1 1

8 0 0 0 0oLL o0.1.1

FIGURE 14. Reordered Binary Similarity Matrix

2. Marketing Techniques and Applications•
In displaying the data relations(,ps in this example, it is cound that the application of

the Bond Energy Algorithm reveals several latent group associations and significantly enhancesthe quality of the presentation of the data. f

Figure 15 contains a matrix showing which Marketing Techniques are used form
particular Marketing Applications. By application of the algorithm it is possible to reorder
or resist the marketing applications on the one axis and the marketing tech (lques on th other

12. Whe data for nt Eunerg wer taken grtm iw Saptpmie-dth 1ba9 sim ilarity m atrix of ReFig w
fthm rTe ul is uk Renain " by 14 .I t Ci lqt entiL ta tr
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ADVER- ACQUI- CUSTOMER DISTRI- MARKET PRODUCT PRODUCT
TISING SITION BRAND SEGMEN- CUSTOMER BUTION SEGMEN- PRICING LIFE-CYCLE LINE

RESEARCH SCREENING STRATEGY TATION SERVICE PLANNING TATION STRATEGY ANALYSIS ANALYSIS

REGRESSION & CORRELATION X X x X
ANALYSIS _____ ____ _____ __

DISCOUNTFD CASH X X
FLOW (DCF) X

INCREMENTAL
ANALYSIS X X

MULTIPLE REGRESSION/ X x
CORRELATION X X

RANDOM
SAMPLING

SAMPLING
THEORY x x

SAYESIAN x x
APPROACH X

COST-BENEFIT l:
ANALYSIS X

CRITICAL PATH x
METHOD (CPM) X__

DECISION x
TREES X X X X

DYNAMIC
PROGRAMMING X

EXPONENTIAL
SMOOTHING _ __

INDUSTRIAL X X
DYNAMICS

INPUT-OUTPUT I-x

ANALYSJ S
LI NEAR X x•
PROGRAMMING

MARKOV X
PROCESS I _ I

MONTE CARLO x x A
SIMULATION _ _x x

NONLINEAR X X
PROGRAMMING

NUMERICAL
TAXONOMY

QUEUEING AMODELS
WiSK -ANALYSIS A A xx
SENSITIVITY x xx

ANALYSIS____ _____ ____ _____ ____ _____ _ ___

TECHNOLOGICAL AA
FORECASTING _

FIGURE 15. Initi
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MER DISTRI- MARKET PRODUCT PRODUCT PRODUCT R&D ROI SALES TEST VENTURE
N- CUSTOMER BUTION SEGMEN- PRICING LIFE-CYCLE LINE PLAN- PLAN- ANAL- FORE- MARKET- PLAN-

ON SERVICE PLANNING TATION STRATEGY ANALYSIS ANALYSIS NING NING YSIS CASTING ING NING
X XN N

Xi X X Xx.,xxxxx
x -i _lx xx

x- 1x xx

•iX XX X X

X

SX

?.¢X X X

'•'• X

•" X_I__ x X _ _x

•.X X X

XX

K X

SX X X X X X

F n M r n

X X

X X

FIGURE 15. Initial Matrix of Marketing Techniques and
Applications
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axis, while preserving all the data relationships contained in the original matrix. Fig. 16
contains the reordered matrix produced by the Bond Energy Algorithm. With the data in this
new matrix form, it is now possible to identify three major clusters or clumps of data. It is
believed that in this new form it is possible to uncover useful information that was not obvious
from the original matrix.

First, the algorithm groups marketing analysis techniques that are used for the same
applications and also it groups marketing applications that utilize the same marketing tech-
niques. This has the effect of putting similar marketing techniques near one another on the
vertical axis and putting similar applications together on the horizontal axis. It is postulated
that the clumps provide, for one thing, a basis for efficient assignment of responsibilities to
analysts and their supervisors, and for another, by exception, a basis for deciding upon the
relative merits of "techniques" specialists and "applications" specialists.

Second, if it is possible to factor a matrix completely so that it is apparent that there is
a unique relationship between a certain group of marketing techniques and a certain group of
marketing applications, then the algorithm will accomplish this. In this example, this has been
partially done by identifying three more or less independent clumps in Fig. 16. In particular, as
was noted by the authors, PERT and CPM are similar in concept and hence they occur
together in the same clump. Al,.o, as noted in the article, risk analysis is often used in
conjunction with the method of decision trees. Here again, these marketing techniques are
contiguous in the new ordering. On the other axis it is found that similar "marketing
applications" are grouped together. For example, Product planning, R&D planning. Venture
planning and Product-line analysis all in;'olve planning of som.• sort and occur in the same
clump because they utilize common "marketing techniques" for planning, such as PERT, CPM.
etc.

Another possible way in which the clumped matrix of Fig. 16 can be useful is to
suggest possible unexploited application of techniques to marketing applications to which they
have not already been applied. These could be identified by looking for conspicuous holes
within the clumps or omissions on the borders of the clumps.

Thus, it appears in this example, that with proper arrangement of binary (yes-no) or
quantified data given in matrix representation, that the amount of information conveyed can
be significantly enhanced to such an extent that it is undesirable to present it in other than
clustered form.

Preceding page blank
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3. Coordinating Airport Design' 3 3I

A practical way to design an airport is to factor the problem into a number of smaller
pieces. If the subproblems can be solved separately and then adjusted so as to remain valid in 1
the context of the original p'oblem, then the task is completed. It is, however, necessary to
determine the best way to factor the big problem into more manageable pieces. I

A numerical example will illustrate the applicability of the Bond Energy Algorithm to
the problem. The objective is to exploit the structure of an airport problem in such a way as to

identify two things:

*The "natural" subproblems 4
* The necessary coordination between subproblems. I

The ultimate accomplishment would be to factor the problem into small, completely

independent subproblems. But given that complete independence is impossible, the next best I
thing is to minimize the intergroup dependencies by identifying the optimal way to subdivide
the problem. L

The first step is to describe the airport problem in terms of a set of variables and their
interrelations. A partial list of exogenous and control variables is shown in Table 3.

The exogenous variables describe those factors mostly dictated by the environment
while the control variables apply to those factors primarily under control of an airport planner.

Let Xi be the ith exogenous variable and let Di be the ith control variable. The Xi's may be

thought of as input data and Di's as the design decisions. Given a set of values for the Xi's, it is
assumed that there exists some way of measuring the performance of an airport design based
on some criteria. The details of the performance function are not needed: just a few basic 1
characteristics. Let P be the measure of performance and let F be the function that measures I
performance. Clearly, P is a function of the Di's. hence

P'•-F (13I, D2) .... ,D127ý

F will, in general, depend on the Xit : however, the discussion will be limited to a specific set I
of values for the Xi's. The design problem involves selecting valutas for the Di's that maximize

13. T7U anAyils nl 'the dataot tot application we dua to Ms. T.W. White of the Inatitute fto Defense Analy.s.j
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Table 3. AIRPORT VARIABLES

Exogenous Variables
I. Total air travel demand
2. Originating passengers
3. Transferring passengers
4. Terminating passengers
S. Greeters and well-wishers
6. Access ground transportation mode for passengers
7. Egress ground transportation mode for passengers
8. Airport employees
9. Taxis and cars that do not park

10. Cars whose drivers park and fly
1I. Rental cars going to the airport
12. Rental cars driven from the airport
13. Bus and limousine
14. Employee accetýs transportation mode
15. Passenger trip duration
16. Aircraft turn around time on apron
17. Mix of aircraft by capacity
18. Gate schedule: aircraft arrivals and departures
1). Origin/destination pattern for baggage at airport
20. Air cargo demaad
21. Runway demand

Control Variables
I. Passenger check-in
2. Baggage check-in
3. Baggage claim
4. Baggage moving system
5. Intra-airport transportation system
6. Cargo terminal
7. Close-in parking lots
8. Remote parking lots
9. Main access roads to and from airport

10. Circulation roads within airport
II. Service area for rental cars
12. Parking lots for rental cars
13. Curb space for unloading
14. Curb space for loading
15. Waiting areas at gait%
16. Stations for intra-ad;port transportation system
17. Aircraft loading system
18. Contzessions
19. Rental car desk
20. Runway capacity
21. Nitmber of gates
22. Passenger information
23, Cargo transfer
24. Air traffic control system
25. Refuse removal
26. Flight operations and crew facilities
27. Aircraft service on the apron
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P. The problem can be simplified, for example, if the function F "factors" into two parts; that

is, if there are two functions Fa and Fb and if the Di's can be split into two groups such that

F (D1 .. D2 7 ) = Fa(A) + Fb(B)

where A and B are groups of Di's such that no Di is common to both A and B. A and B

represent subproblems that can be solved separately. The general goal is to break the function

into as many "factors" as possible such that there is no, or very little, interaction between

factors. .

The next step is to determine the interaction between all pairs of control variables, Di

and Dj, for example. Does the behavior of Di with respect to the performance function F

depend on Dj? Let R(ij) be the answer where R(ij) may take on one of four values as follows:

0 = no obvious dependency I
= weak dependency

moderate dependency

3 = strong dependency.

Based on White's subjective judgment, values for R(ij) were generated and appear in Fig. 17. It 1
is assumed that R(i,j) R(j). Note that the ordering of the items in the matrix produced very

scattered data. The eye is not able to identify any striking organizational structure.

The Bond Energy Algorithm was applied using the original matrix as a starting point
with the objective of rearranging the rows and columns of the matrix to obtain a better order.

The algorithm tends to push the larger numbers together into clumps and favors large clumps

over smaller ones. There is no preferential orientation of the final clumps; however, thei

symmetry of the original matrix about its diagonal results in a symmetrical final arrangement.

The improved ordering is shown in Fig. 18. (The algorithm applied to the original matrix

required about 2 minutes of CDC 1604 computer time for a number of starting pohits.) I
After studying the matrix in Fig. 18, it appeared that there were eight clumps of

numbers as indicated in the figure. The clumps contain all of the strong dependencies (the 3s)

and all but six of the moderate dependencies (the 2s).

The interpretation of Fig. 18 is that clumps along the liagonal correspond to natural

divisions of the big problem into subtasks. The off-diagonal elements not included in any

clump correspond to coordination links. Figure 19 illustrates this interpretation. The items are

38 1
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CONTROL VARIABSLVS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 330220 11 0000200c 0 1000300000
2 330300 1 1 0000200 1 00 1 00300000
3 003310110000030100100000000

4 2 3 3 3 0 0 0 0 0 0 0 0 I 1 0 0 1 0 t) 0 0 0 0 0 0 0 0
5 20 10 30 22 1100000300 103 100000
6 0000030021 0000001 0010030012
7 111020322310110100000100000
78 11 1 0 20232200000100000000000

S9 0000 1 2223300000000000000000
Z:10 0000 1 13233 11220000 1 00000000

A1] 000000100 1 330000000 1 0000 1 00
-12 000000000 1 33110000 00000 0 00
0 13 220 1 00 1 0020 1 1 00100100200000
•14 003 1 00 1 0020 1 030 1 00 1 00000000
015 00000000 000 003 111003 10000 1
016 0 1 1 03011000 1 11 3 1 1103200 0 0 0

17 0 0 0 1 0 1 0 0 0 0 0 0 0 0 I 1 3 0 0 1 1 0 1 0 0 0 3
1S 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 0 0 0 1 0 0 2 0 0
19 0 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 3 0 0 1 0 0 0 0 0
2000000 00000000000010032003010
21 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3 3 1 0 0 2 3 0 0 1 0 1 1
22 3 3 0 0 1 0 1 0 0 0 0 0 2 0 1 2 0 1 1 0 0 3 0 0 0 0 0
231000030000000003310000300101

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 3 0 2 125000000000010000002000000303

26 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 0 3 0
27 00000200000,000 1 03000 1 0 1 1303

(SEE TABE 3 FOR DESCRIPTION OF VARIABLES BY NUMBER.)

FIGURE 17. Dependency Matrix for Airport Variables

CONTROL VAR,!,RiE$
18 25 27 23 6 17 IS 21 16 5 8 9 10 7 13 22 I 2 4 3 14 19 12 II 20 24 26

IBI 2- 0 0 0 0 I 0 I 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
25 0•0o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0
27 0 3 3 1 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0
23 00133100000000000000000000 0
6 00233 1 00000M 1000000000o00 0 1

17 0 0 3 1 3 1 1 1 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 I 0 0
15 1 0 I 0 0 I 3 3 I 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 013 3 3 300 0 0 0 0 0 0 0 0 0 0 0 0 0 I
16 100001133311 0 0 1 12 01110

015 0000 000 333 2 I 1 20 12 00 1 0 I 00000
8 0000 000 12322200 11 0 1 0000000<9 0 0 000 0 0 01 2 3 3 2 0 020 0 0 0 0 0 0 0 0 0 0

~10 0 0 00 0001 320 00 0 021 1100 0
>7 00000 00 122233111101 [001000

13 00 00 0 00 0 0 I 0 0 0W 133222 I1 0 0I I 0 0 0 0Q~~~~~~~ 22 1 0M 2 3 3 3 0/ 0 0 o 0 0 0 0o~2 000001001012300100
Z I 10000000 0 100 1 23332J00000000
u 2 00 0 0 0 0 0 0 1 0 1 0 0 1 2 3 3 3 3 0.0_ 1 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 01 0 2 331 0 0 0 0 00
3 0 0 0 0 0 0 00 I 1 0 0 1 0 0 0 3 3 31 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0o0 ED 1 0 0 0 1 3 3 1 1 0 0 0 0
19 0 0 0 0 0 0 0 0 I I 0 0 I 0 I 1 0 I 0 I1 3 1 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 I 0 1 0 0 0 0 0 I 1 3 3 0 0 0
I1 0 1 0 0 0 0 0 0 0 0 0 0 I I 0 0 0 0 0 0 0 0 3 31 1 0 0
20 0 0 0 0 1 1 0[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 3 1
24 0 0 1 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 3 21
26 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 o10 0L 2

FIGURE 18. Reordered Dependency Matrix for Maximum Clumpiness
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18. CONCESSIONS [
25. REFUSE REMOVAL >
27. AIRCRAFT SERVICE ON APRON
23. CARGO TRANSFER___j
6. CARGO TERMINAL 0

17. AIRCRAFT LOADING SYSTEM

15. WAITING AREAS AT GATES 0--
21. NUMBER OF GATES (A1

16. STATIONS FOR INTRA-AIRPORT r' z z z
TRANSPORTATION

5. INTRA-AIRPORT TRANSPORTATION 0 > >-n tA/ 7 C. .•

SYSTEM -n > --

8. REMOTE PARKING LOTS >--___ A _ Z___
9. MAIN ACCESS ROADS R Z 0 a >

10. CIRCULATION ROADS -___________>_

7. CLOSE-IN PARKING LOTS r- .!
13. CURB SPACE FOR UNLOADING >
22. PASSENGER INFORMATION x Z , ,

1. PASSENGER CHECK-IN ) > 0Z [

2. BAGGAGE CHECK-IN
4. BAGGAGE MOVING SYSTEM
3. BAGGAGE CLAIM

14. CURB SPACE FOR LOADING
19. RENTAL CAR DESK en
12. PARKING LOTS FOR RENTAL CARS MZ
11. SERVICE AREA FOR RENTAL CARS
20. RUNWAY CAPACITY -4 >

24. AIR TRAFFIC CONTROL SYSTEM > ;
26. FLIGHT OPERATIONS AND CREW j

FACI LITI ES0n

PRIMARY PRIMARY
SUBPROBLEMS COORDINATION

LINKS

FIGURE 19. Suggested Subpyoblems with Coordination Links

4

I



listed along the left of Fig. 19 in the order found on the "clumped" matrix (Fig. 18). As a first
approximation (shown below), the performance function can be split into eight factors

corresponding to the eight subproblems shown in Fig. 19.

P • Fa (D18 , D25, D2 7)
+ Fb (D2 7, D23 , D6 , D17 )
+ Fc (DI 5, D2 1, D1 6 , D5 )
+ Fd (135, D8 , D9 , D10, D7)

+ Fe(D13 ,, D2 2, D, D, D 4 )

+ Ff(D 4 , D3 , D1 4 )
+ Fg (DI 2 , 1l)
+ Fh r'D20 , D24 , D2 6 )

Except for D27 (aircraft service on apron) and D5 (intra-airport transportation system), the
eight components in the above approximation form independent subproblems. The six coordi-

nation lin'.s shown in Fig. 19 could form the basis of six "correction factors" which would
improve the approximation. The correction factors would be of the form Aa (D6 , D9 ), Ab
(D10, DI 3 ), Ac (D10, DI 4 ), Ad (DI 6, D2 2), Ae (D5 , D1 ), and Af(D2 0 , D2 1).

4. Ordering of Error Matrices in the Analysis of Perception of Consonants

In this example, the Bond Energy Algorithm is used to reorder an error matrix

obtained from an exp',riment testing the perception of consonants. The matrix under consider-
ation is a square matrix with the 29 consonants lying on the vertical and horizontal axes. These

data were taken from an article by Ahmed and Agrawal (Ref. 29) in the Journal of tie
Acoustical Society. In the experiment each consonant was enunciated in the intial position of
540 nonsense syllables. The aOI element of the matrix contained the number of times
consonant 0 was heard when consonant a was spoken. It is clear than since the correct

consonants are heard most often, the diagonal elements of the matrix will be largest. For this
example, the square roots "of the elements were used rather than the elements themselves,
and all the elements whose values are less than two are deleted.' I The error matrix was input
in a random manner and the best ordering of the reordered error matrix is shown in Fig. 20.
The square blocks lying along the principal diagonal of the matrix indicate that the consonants
have been clustered into 7 groups. These clusters represent those groups of consonants that
were most often confused with one another during the experiment. The off-diagonal nof-zero

14. In this exmple the weifhla k-Z Is again und to pesemw sale.
IS. Trb. umel elements wse deleted so tha fth pattuna foamed by the kuge elemets may be visuafy WeatalD moee
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entries represent consonants in one group being mistaken for consonants outside their group.
Note, for example, that one cluster contains the consonants dh, d, .d, and b which occur

together because they sound so much alike and hence were often mistaken for one another
during the experiment.

This example again illustrates how this method of direct analysis can be a significant T
aid in determining inherent group structure contained in data matrices.

11 h h h h h th h h

Tfd 3 d3 tfg p d .d Ab w r .t t p imn I

Tf 23

Sd 3  23 3
3 h 223

f 2 23
f 23 5
S 4 23_ __

h k23 2 2 3
b h 3 23 2 3

222 4 '2 3 2 I
Ph 2 4 22 5 3

2 23 3 2th • h2 3 II 20 2 2 :

A 2 2 3 21 9 3d h 2 2 3 23 2 •
d 2234 2

523 2 2
b 2 3 23 3

W235
r 32

S2 22 6

.j 5 23 2

p 4 233
g23
k 4 23
h 3 2 23

232 [23 54 23

FIGURE 20. Reordered (HINDI) Consonant Error Matrix
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5. Inter-City Distances

In this example, the Bond Energy Algorithm is applied to a geographical problem to
determine if it can satisfactorily cluster or clump together neighboring cities when a large
number of inter-city distances are given as input data. Since the algorithm clusters large
elements of a matrix, it was decided that the square root' 6 of inverse distance would be used

for the matrix elements. In particular, the elements of the matrix a /kj are given by the
expression, (with k 2)

a1/2i=
ad• i• j,and

1/2ij 20 alli=j

where dii is the distance between city i and city j in hundreds of miles and the resulting matrix

elements are rounded to the nearest integer. This input matrix is given in Fig. 21, where, for
visual clarity, all the elements with values less than 7 have been deleted. It should be

remembered from the definition that the larger the matrix element, the closer are the two

cities i and j.

The matrix given in Fig. 22 is the reordered inverse distance matrix following operation

by the algorithm on the input matrix. Elements whose values are less than 7 have again been

deleted.

A number of clusters may easily be determined by identifying the square blocks of
data that occur along the main diagonal of Fig. 22. The first two cities, Helena, Montana, and

Bismark, North Dakota, are well isolated and constitute two separate clusters themselves. The
next two cities, Denver, Colorado, and Cheyenne, Wyoming, are quite close and constitute a
cluster. The next three cities, Des Moines, Iowa; Dubuque, Iowa; and Chicago, Illinois, are
contained in the next cluster, and so forth. The one anomaly that does exist is the occurrence
of the rectangular off-diagonal block of 7s. This indicates that although Chicago, Detroit, and
Ft. Wayne are geographically near each other and are therefore in the same cluster, that

Detroit and Ft. Wayne are also near some cities in another cluster, i.e., Cleveland, Akron,

Columbus, and Cincinnati.

All these clusters may be verified geographically by referring to the map of the United
States given in Fig. 23. The cities under consideration are denoted by darkened squares and the

clusters are shown by the cities contained within each closed line.

16. 1h §4u= 1001 f~t used to pIcOW cak and koep th. "ats1k e =tt nt' ba than o" equa to 20.
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00 z z 0 K11.

AKRON. 0. 20 7 7 20 10 7 7 1ATLANTA, GA. 20 7 •
BALTIMORE, MD. 20 10
BIRMINGHAM, ALA. 7 20

' BISMARK, N.D. 20
BOSTON, MASS. 20 |
BUFFALO, N.Y. 7 20
CHEYENNE, WYO. 20 10
CHICAGO, ILL. 20 7 7
CINCINNATI, 0. 7 20 7 10 7 7
CLEVELAND, O. 20 7 7 20 10 7 7
COLUMBUS, 0. 10 10 10 20 7 7
DALLAS, TEXAS 20
DENVER, COLO. 10 20
DES MOINES, IOWA 20 7
DETROIT, MICH. 7 7 7 20 7
DUBUQUE, IOWA 7 7 20
EVANSVILLE, IND. 7 20
FT. WAYNE, IND. 7 7 7 7 7 7 20 1
HARRISBURG, PA. 10 20
HELENA, MONT. 20

FIGURE 21. Initial Inter-City Inverse Distance Matrix

ul z •

20 0

HELENA, MONT. I0

BSMALTMR, ,D. 2

DES MOINES, IOWA 20 7

DUBOQUE, IOWA
CHICAGO, ILL.
DEVROIT, MICH. 20 7 2 7 71
FY, WAYNE, IND. L7 _.7 20 7 70._ 7 7

HARRISBURG, PA.201
BALTIMORE, MD. 0
BOSTON, MASS. |02 •

COLUMkUS, 0. 10 20 to
CINCINNATI, 0O, 7 7 IQ10
EVANSVILLE, IND. Ll 2
ATLANTA, GA.

SIRMINGHAM, ALA.

DALLA$, TEXAS

FIGURE 22. Reordered Inverse Distance Matrix I :1
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'BISMLARCI( DUBUQUE DEIROIT

NNE DES MOINES FT. WAYNEBUFL

'CHICAGO CLEVELAND

BOTO

* Ik

I - NCINCINNATI

FIGURE 23. Geographical Illustration of City Clusters
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The conclusion that can be drawn from this example is that the Bond Energy
Algorithm can indeed rearrange data geographically when it is presented in another order

(alphabetically).

Preceding page blank
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il. THE MOMENT ORDERING ALGORITHM

A. INTRODUCTION

The purpose of the Moment Ordering Algorithm is to use the information contained in

an array of data to find a one-dimensional ordering of the ro% (and columns) of the array.

This one-dimensional ordering will represent the ranking of the rows (and columns) under the

relationship which the algorithm finds to be the most important in analyzing the array. The

algorithm therefore provides a method of extracting, from the complex interrelationships

which may be expressed in the array. a single important relationship, and of organizing the

cows and columns according to this relationship. For example, one of the problems discussed

below involves an array describing the voting pattern of Senators. Tile algorithm in this case

takes the array, originally in the arbitrary form of an alphabetical listing of Senators and a

chronological listing of votes, and produces an ordering of the Senators, and of the bills voted

upon, based soitly upon the origina! array, which represents a lii ,ral!conservative ordering. A

second example involves an array consisting of archeological sites as the columns, and of

pottery types -s the rows, with the entries being the concentration of a pottery type in a site.

The algorithm in this case privides a reordering which puts the pottery types, and the sites. in a

choronological order, based upon the fact that the most important factor in determining the

types of pottery found at these sites was the age of the site.

•I B. THE ALGORITHM

-- I. Motivation

The definition of the algorithm is based upon the fact that if two rows are similar to

each other, their mean row moments should be close to each other in value. The mean row

nioiomeit xi of row i is defined as
"N

N
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I

where aij is the ijth entry in the array. This is merely another way of stating that rows are

similar if their large entries occur in the same columns, or in columns close to each other.
Similarly, if two columns are closely related, their mean column moments, defined as

M
Z ia

Yj= 1= 1
should be close to each other in value.

Based upon these observations, then, it is desirable to arrange an array so that its rows j
are in order of the values of their row moments, while at the same time its columns are in

order of the values of the column moments. This state will correspond to a one-dimensional

ranking of both the rows and the columns according to the same underlying variable. The

algorithm provides a method of finding such states, and hence of ordering arrays of data.

2. Definition

The algorithm, beginning with an arbitrary arrangement of an array, proceeds in the I
following way to find a state with the property described above, of having both the rows and

the columns of the array arranged in order of their moments:

1. The row moments are calculated for the original arrangement of the array, and

the rows are reordered to put them in order of their moments.

2. The column moments are calculated, and the columns reordered according to j
their moments.

3. Because the reordering of the columns changes the values of the row moments, I
the rows will no longer necessarily be in order of their row moments. The row

moments are therefore recalculated for the new arrangement of the columns,

and the rows reordered according to these new moments.

4. The procedure is continued, alternately reordering the rows and columns, until I
a state is found in which both are simultaneously in order of their moments.

This state, then, is the desired ordering of the rows and columns, and is a II
solution of the algorithm.

soI
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The algorithm is therefore entirely an iterative proc,3dure. The progress of the algo-

rithm toward convergence, however, is marked by an increasing concentration of the larger

elements on or near the main diagonal.1

The progress of the algorithm is illustrated, for a 4x4 array, in Fig. 24. The initial state

of the array is a; the values of the row moments for that array arrangement are also shown.

The algorithm then proceeds through states b, c, and d, by reordering the rows and columns

alternately. When state e is reached, it is found that the rows are already in the proper order

and do not need to be reordered. This marks that state as a solution.

The concentration of the larger elements on or near the main diagonal in the solution is

pointed out in Fig. 24 by circling, in the initial and final states, the four largest elements. They

are scattered in the initial state but in the solution three are on the main diagonal and one is

just off it.

The following subsections present further details concerning the use of the algorithm.

Section C presents several specific problems which have been investigated by use of the

algorithm, and illustrates the utility of the orderings produced by the algorithm.

3. Stable States and Multiple Solutions

The algorithm as defined above takes an arbitrary initial ordering of an array and firids

a stable :,;orderin-. !t has been found, however, that if differimt initial orderings of the same

array are used, different solutions may be found. For example, Fig. 25 shows two different

solutions whicn can be found for a simple 3x3 array.2

When the algorithm is run many times on larger arrays, using different starting

orderings each time, it has been found that those solutions which occur most frequently

always are amongst the most diagonal arrangements of the array. 3 Conversely. any solutions

which are very nondiagonal occur only rarely.

This observation has been used as the basis of a technique for obtaining a final ordering

of the rows and columns which best utilizes the additional information found in the multiple

solutions.

1. Appendtx If discustse a alute of t'fectivencis which has been detfnod to Ifleasurc this progzsi towaird
Sdtagomtity. Ilowervc, becaus unlik the Bond IFacigy Algoritthm this atgorithm was qot dcveloped totnas.imize this quantity.
the tcari.lre or eff'tcvenem defined h,3 bWen fowlld to tw of ostly talutinal use.

2. Appendix I dewtibes an iavottgaiion which was nr•ka. f•t a 303 a•ay, of tlh paop:Wktt whlch kla to the xitatetltv

of tk•v multipte soutions.
3.As tnwaaw~4 by Wb ICoflt~at Codflint rncat svwc of Oit~tivinima dcftfted in Appendix H.

S51I



(INITIAL STATE) R
ROWJ•- !

SV 6 MOMENTS

A 3 3 4 5 2.73
( ® 4 5 2 2.05 1
c 2 1 ® 3 2.86
D ®® 2 5 2.25 j

REORDER ROWS

t 6

B 8 4 5 2

D 7 6 2 5
(b) A 3 3 4 5

C 2 1 8 3
NEW COLUMN 1.95 2.07 2.79 2.60
MOMENTS ,

REORDER COLUMNS

NEW ROW ,
6 V MOMENTS

B 8 4 2 5 2.21

(c) D 7 6 5 2 2.10
A 3 3 5 4 2.67
C 2 1 3 8 3.21

ItEORDiR POWs

Di 7 6 5 2
B 8 4 2 5(d) A 3 3 5 4

C 2 -- 1 3 8

NEW COLUMNI 2.00 1.93 2.40 2.95
MOMENTS

REORDER COLUMNS
NEW ROW 5

-, ,-6 Y MOMENTS -

4 2 5 2.42 i-
(e) 3 3 5 4 2.67

C 1 2 3 @ 3.29
NO REORDERING OF 1

ROWS NECESSARY
(SOLUTION)

FIGURE 24. Operation of the Algorithm on a Small Array
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SOLUTION 1 SOLUTION 2

A 7 2 1 A 7 1 2
B 3 5 2 .C 3 7 0
C 3 0 7 B 3 2 5
I I' 13-6. -3

FIGURE 25. Illustration of Multiple Solutions

The algorithm is run a "large" (25 or 50 has been found satisfactory) number of times,
each time starting from a different random ordering of the rows or columns, and the order of
the rows and columns found each time is saved.4 The average of the position taken by each
row (and column) in the solutions is found. (Solutions found more than once are entered once
for each time found in obtaining the average.) The rows' and columns' final order is then

* simply the order of their average positions. Most often, this order will be the same as the order
in the most common solution; it is always very close to that order.

Despite the additional complication introduced, this technique is considered preferable

to merely taking the most common solution, because in the event that several solutions are
common, this technique best takes into account the alternative orderings each solution
represents in arriving at a consensus final ordering.

4. Additional Details

The previous sections have discussed all of the features of the algorithm which are
important in practice. There are, however, two points of theoretical interest which must be

F mentioned at this poin' Both concern situations which can arise in the process of iteratiun
carried out by the algorithm. Both occur so rarely, however, that in practice they can usually
be ignored.

a. Ties. In carrying out the algorithm, two or more rows or columns may have

identical moments. In this case it is necessary to resolve the tie to obtain an ordering so that
the algorithm can proceed. This is done by trying all permutations of non-identical rows (or
columns) and selecting that particular row (or column) order which yields the highest value of

4. Note that a particular order and its reverso are onsidered idnftircal and saved as the lante order.
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the correlation coefficient R.s If several permutations of the rows (or columns) have the same T
value of R, the algorithm simply accepts the !ast order investigated. It should be noted that
ties, while prominent for small, binary (0-1), arrays, very rarely occur when dealing with large

arrays containing non-binary data.

b. Cycling. According to the definition of the algorithm, the iterative procedure is

continued until a stable state unchanged by either row or column operations (Fig. 24, for

example) is found. In fact, however, it is theoretically possible that, instead of arriving at such

a stable state, the algorithm may cycle between a small set of states. Fig. 26 illustrates the

phenomenon for a specially designed small array (in actual fact such cycling has only been

found in very much larpcr arrays).6 Once the algorithm arrives at the state shown in Fig. 26,

which it can reach from many other states, it will cycle forever between a, b, c, and d, in that

order. Such an "infinite loop" itself represents a final state of the array. The nrocedure used
when such cycling is detected therefore is to terminate the iterations and take one of the

states involved in the loop as the solution. a"

(a) y 6 (b) a
A 9 1 0 0 REORDER A 9 1 0 0
B 5 0 0 5 ROWS C 3.5 2 1 3.5
C 3.5 2 1 3.5 B 5 0 0 5
D 0 1 0 9 D 0 1 0 9

REORDER REORDER

COLUMNS COLUMNS

(d) a ____ (c) a , 8 6 I
A 9 0 1 0 REORD)ER A 9 0 1 0
B 5 0 0 5 ROWS C3.5 1 2 3.5
C 3.5 1 2 3.5 B 5 0 0 5.0
D 0 0 1 9 D 0 1 9

FIGURE 26. Illustration of Cycling Phenomenon

In practice, this phenomenon has been observed only very rarely, and only in very large

arrays. Furthermore, even when it does occur, it has been found that most often the algorithm

will find normal stable solutions when operating upon the same array from other starting I
"points. For this reason, this cycling, while theoretically quite objectionable, has been found to

be of little operational difficulty. J
5. Sei Appendix H.
6. The symmnetry and nornalization Inherent in the array of Fig. 26 are not steccsy for the cycling to occur. but

were built In to slmplfy the array. I
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5. Computation Time

For an MxN matrix, M operations are required to compute each column moment and
N operations to compute each row moment. Therefore, for each iteration, the total number of

operations necessary to reorder the rows and columns is 2MN. Finally, if it requires I iterations
for the algorithm to converge, the total number of operations to reach a solution for each
random starting point is 2IMN. The computer time required on the CDC 1604 to solve a

particular 29x29 matrix was about 24 seconds for one starting point; an 80x80 matrix took 4
minutes. Note that these times are influenced by the number of iterations required for

convergence as well as by the matrix sizes.

C. RESULTS

This section describes two problems investigated with the Moment Ordering Algorithm.
It demonstrates that the algorithm can in fact uncover a dominant relationship from the vast
amount of information in a matrix, and can produce orderings of the rows and columns which

reflect this relationship.

1. U.S. Senate Voting Patterns

The algorithm was used to study the relationships between the voting patterns of a

group of U.S. Senators. The hope was that, givea only the recorded positions of Senators on a
randow group of issues, the algorithm could generate a meaningful ordering. The first 20

Senators (alphabetically) in 1968 were chosen, and their recorded positions7 on 12 issues were

tabulated (see Tables 4 and 5). The recorded position of the President on cach issue was added

to the table, and the algorithm was applied to the resulting 21 x 12 array. The results, as shown
in Table 6, showed an ordering from conservative Republican and Southern Democrat at one
end to liberal Democrat on the other. To be sure that the strong orderirg was not an accident,
the same type of array was constructed tor 112 different roll ca'!s (but lhe same Senators), and

the algorithm was rerun. The correlation between the two sets of results (see Table 6 again)
indicates that the ordering found was significant. The difference between the two rankings
does not, it is emphasized, reflect any inherent limitation upon the accuracy of the algorithm,

but rather is a result of the limited sizes of the samples of votes used in the analyses. If more
roll calls were added to the arrays, the results would approach each other more and more,
reflecting the enlarged and therefore improved sampling. The algorithm's solution indicates
that, as might be expected, although a Senator's position on any given issue may not always be

~ti 7. As taken from tables In Conseusional Qutnedy Almanac, Vol. 24, 1968, pp. IS.58S.
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Table 5. ARRA YS USED IN SENA TE VOTE PA TTERN ANAL YSIS 3

Vote Rol]b
No. Call Vote Subhject Matter Sponsor

1 10 33. 511 Amendment to open housing bill to h-it federal courts from impairing title to real I-ruin
Property as recorded under stile recording statute-.

2 20 61-211 Amendment to open houming bill to punish anyone instructing tit the use of fire Long
armpt for hots. or interfering with poilice durng. a niot.

3 30 61 - IQ Amendment to open housingt bill to provide a comprnomis bill. lPirkien

4 40 19- 51 Amendment to gold cover removal hill to limit expansiiin (of Federal Reservc I Ailloit

ntote% in circulation fii 4;~ per year.

5 50 43. - 11 Amnendmunt to Stindard% of ( onduct Rciolutinv It, .01 ik'ios of politicil Yarirloriiigli-
.Vciintribution% furt ertaun office expenses, Lotl

Wi Ix -144 Amenidment to excise tax extension hill to provie 10't suirlus on peouple Mtundt-
trading with Cnmmunust n~ations which supply North Viwtn~im ByrII IVaI

70 53-15 Amnendment Iit eve use tax extension bill to impose IOP untonic tax %is urcauri Wiltl"iun-
unit limit expenuditiires to S1110 billion. Snu.uih,-

11 10 2110 0 Amrendnient tit Military Procurement Authorireation to cut RAt) funulsi ... riiv llart
$7.9 to $7 4 billion.

9 90 39-19 Anierdment tit ( onservation Fund bill to remiove outer contineni.it %hell Williams

us ~ revenues froint lund fur I1Q72 and 10i731

to o00 IQl 5 Amendment tIm Orntbii (rime Bill tit prohibit inteesltaus maiil order sali- I. eviieds

I I [to 51-30 Anicndnient it, (lminiiii Crime Bill toi delete laninuaze denis -ng Siipt, i at Itslve
tiuruvdictioii Io ireview Mtite court ludges dcecivions to admii ic% mewss tcI esit,, -
in cvuden,,.

120 33-4 Amenidment t.- !lrnouhuu ("rime Bill tii allosalt 2.1 instriu of its- il fioids in lhrinise

13 I127L 25 -35 Atmenudment to requsiire tities as well 4s 414tcs to (vreimburse NIle I'1 -'ts lot Rlussell
14~ ~~ ~ ~ l3'I4 7 rotisses insuite-d hi,. NI 111.

1 13%4-27 Aiiciiilowtieiit i dei,- IVe tui1n ons retirement benefiis frioi bill I., esiend ileni, Ciarlsr,
- ~il ofie it hianlerupics relervee

It 1 IS0 44-3.1 %i'thuin io1 table amentilneni winch wiiild hiave priisided xS2 milliion siipple, Iliollind
mcntal .uopropriaiiiii tit tlbor l)tparimeni for summer juibs.

Ifi i AO Is 16-1 Asinrucomenls1 tii %104lt)ur( Construcition AuiihorMirain tit Lill SiAY mt Ail (Ilrk
Force funds by 10:

I 1 t1ll 14- 111 Amrenidmeni io movenitiv delinquency bill io 31alluiai ll funds as hlock prants It, Murptthy

I X 1110 34 S.52 Amniidmeni list I deral Agient% Aulborutaulon toi ciil NASA. RI~) iiund% int Willaiams
adifloitunllr tIt ;n) illiov

Ii 100 30 - 40 Aienimemult h, Agricuiltuural ALI li limit toi S7i000 pauymenvt U.' iium priud-iuci Willuair.S

furt pan is upaliuu' in certian igruculiuuraui pruieramits.

.10 200 464s 4 Amuendmentv to1 lv resi Itaic' Bill toi strike icul lainguage jiuuhortiunr leseril Nheuun'ti
Reserve bunks it) piurchise iobligations directly froum federal agencties,

211' .I 1 2 Amenutuien i to strike ioul language added by Hoiiuse which fundiedl esperosultiue I ouimmitlee

(it %file. iusiulce and Commerce to $1.911 billion

.2 211, 4h -211 Poirein Aid Aulhmritaiuion Hill

2' .230 23.35 Amendment to Renegtmuiation Act; io enempt Renegotiation Board fromnt Proxmire

I I emmi'immyev lfimitations

24 .140 31 I 53 Aniendmnent toi Gun Comntrol Act to add a tegistration provision. Jeruuoske.

a luforna tmon is taken Itroiii Ihe (iwirgev uuimautQuiaelrrl; A eoauiau. (Vol. :4. I9fiX .iti pp SCSix.
rir first 12' roll calls abover ire uIncluded tin the first array, the secon 12 in the second array

Whens A roll Call velOcIed was 0 Otum ne-uuvhed 1'. .uunve) ijficnunfornmation. a roll call close tin lttle [to it it wus uuhiitiluuud
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Table&6 RESULTS OF VOTE PATTERN ANALYSIS"

Order Array 1 b Array 2 b

1Burdick Burdick

2 Clark Bayh

3 Chiurch Clark

4 Brewster Brewster

5 Bible Church

6 CASE Bartlett

7Bayh Byrd (W.Va.)

8Anderson Anderson

I10 President Cannon

> 1 BIROOKE COOPER I
S12 Cannon BROOKE

S13 AIKEN Bible

15ALl BGSi
14 Byrd (W.Va.) President15 ALOT7BOGG
16 BAKER AIKEN

17BOGGS ALLO'1T

18 COOPER Byrd (Va.)

19 BENNETT BAKER

20 CARLSON CARLSON

21 Byrd (Va.) JBENINETT
a'See Tables 4 and 5 for input data.3
bRopubl~cns In cap!ta lettems
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predictable, overall voting patterns based upon ideology are strongly evident, and Senators can
be placed reasonably well on a liberal-conservative spectrum. More important, for our

purposes, it indicates that when a meaningful ordering is inherent ill a set of data, the

algorithm will find that ordering.

2. Chronological Ordering in Archaeology

The algorithm was used to attempt to order a series of archaeological deposits. The

basic data available is the distribution of various types of pottery (eight, in this case) among
various deposits of archaeological interest (also eight, in this case). Robinson (Ref. 30), upon
whose work this example is based, hypothesized that it should be possible to arrange these

sites into a proper chronological order by assuming that pottery types come into and go out of
general use in a regular manner over time, and that, therefore, deposits similar to each other in

the amounts of various types of pottery will be close to each other in time as well. Thus. if a
satisfactory one-dimensional arrangement of the pottery deposits can be found, on the basis of

a pottery-type percentage array, the sites should be chronologically ordered. This was

therefore used as a test of the Moment Ordering Algorithm.

The raw data matrix presented by Robinson in Ref. 30 is shown in Table 7. If the

algorithm is performed on this array. the solution found is 3A, 2A. 3B. I A, 3X, 2B, I B. 2C.
which is very close to that presented by Robinson, and which satisfies the tests he carries out

on his candidate solution.

Table 7. RA W POTTER Y P_.hRCENTA GES

Pottery Deposit
Type 2A NB 2C IA lB 3A 3B 3C

1 24.0 1.4 0.2 11.3 0.3 29.6 54.3 0
2 66.8 0.9 0 0 0 0 3,5 0
3 1.3 0 0.2 3.8 0.2 14.1 14.0 6.6
4 0 0 0 1.3 0.2 0 1.8 3.3
"5 0 0 0 3.3 0,5 0 5.3 5.5
6 4.0 0 0 24,9 1.4 7.0 7.0 27.5
7 0 97.7 99.3 52.6 97.4 0 2. 3 57.1
8 3.9 0 0V3 2.8 0 49.3 1.8 0
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I
Robinson, however, introduces an "agreement coefficient" between two pottery types, I

defined arbitrarily as:

ai 200- N Pik Pjk I where there are N sites,

k- I I
and Pik and Pjk are the percentages of types i and j in site k. Therefore, aij 200 constitutes

total agreement between the composition of two sites, aij = 0, total disagreement. Robinsons

resulting array is presented in Table 8. Robinson then attempts to carry out a "rearrangement"

of this array to drive large numbers toward the diagonal; he describes a semi-systematic manual

method of doing so and presents the resulting order as his solution. The Moment Ordering

Algorithm was run on Table 8 and found exactly the same order as Robinson's method -2A.
3A, 313, 1IA, 3C, I B. 2B, 2C. The reordered matrix of agreement coefficients is shown in Table
9, where it is apparent that the larger matrix elements have accumulated around the main

diagonal of the array. The advantage obtained in using the algorithm, of course, lies in the fact

that it is an automatic, systematic approach and does not require personal judgments to be

made, as Robinson's method did. The fact that it reproduces Robinson's chronological

ordering reinforces the belief that the algorithm is suitable for just this problem-ordering

entities in one dimension based on their interreiationships.

Table 8. AGREEMENT COEFFICIENTS

Pottery Pottery Deposit

Deposit 2A 2B 2C IA 11B 2A 3B 3C

2A 200 5 1 39 4 66 69 11
2B 5 200 196 108 195 3 29 114 1
2C ! 196 200 107 196 I 26 115 1
IA 39 108 107 200 110 50 82 172

IB 4 195 196 110 200 4 30 119

3A 66 3 1 50 4 200 101 27

3B 69 29 26 82 30 101 200 66

3C 11 114 115 172 119 27 66 200 I
o!

I
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Table 9. REORDERED AGREEMENT COEFFICIENTS

Pottery Pottery Deposit
Deposit 2A 3A 3B 1A 3C 1B 2B 2C

2A 200 66 69 39 11 4 5 1
3A 66 200 101 50 27 4 3 1
3B 69 101 200 82 66 30 29 26
IA 39 50 82 200 172 110 108 107
3C 11 27 66 172 200 119 114 115
I B 4 4 30 110 119 200 195 196
2B 5 3 29 108 114 195 200 196
2C 1 1 26 107 i15 196 196 200
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Ill. THE MOMENT COMPRESSION ALGORITHM

A. INTRODUCTION

The Momtent Compression Algorithm discussed in this chapter is based upon the key

observation that the distinguishing feature of a matrix in perfect block form, (see sketc:i) when
contrasted with the same matrix after row or column permutations, is that the moment of
inertia of each row and column about its mean is minimized: any row or column permutation

of a matrix in perfect diagonal block form will "expand" a block and make it less dense.
thereby increasing the matrix's summed moments of inertia.

Consequently a procedUr., which minimizes, by row and column permutations, the

sums of the row and column mean square moments about their means will drive the matrix

into perfect block form if this is possible.' ,2 if this is not possible, the procedure will still tend

to produce a pleasing pattern because it tries to cieate dense blocks. This reasoning led to the
development of the Moment Compression Algorithm.

Although Moment Compression has b-en superseded by Bond E both as a
theoretical ME and as a computational procedure, this material is being presented Loth to

indicate an approach which was explored and found impractical, and to show a logical
stepping-stone in the development of the Bond Energy Algorithm. Moment Compresion was

historically important for four reasons:

1. Ambignity will still exist bveauuw. .
A

B 4nd B '

will be consldetWc eulnly $ood. But onre wuld ti. ildiffetatl to such ambligtly n baj;I as the vwiatkl,, have bwua fattom
cosrc"1Iy.

2. This a."tion is piovwd in Appendix C.
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(1) It was our first attempt3 to describe the appeal of a pattern in termas of

a quantitative ME, the sums of the moments of inertia. This was

motivated by a desire to produce dense blocks of numbers.

(2) It was our first attempt to devise an algorithm based ron ME-

optimization. This was in contrast to heuristic algorithms, such as

moment ordering and some similarity matrix approaches, where it was
not clear what each step in the algorithm was trying to accomplish. In

particular, rigorous optimization of the ME would avoid the problems

of cycling ard non-uniqueness4 experienced in the Moment Ordering

Algorithm.

(3) It was our first attempt to devise algorithms which find near-optimal,

rather than optimal, solutions for the ME. The major pitfall encoun-
tered in the Moment Compression case, but not in the Bond Energy

case, was that the approximate algorithm was slow5 and poor.6

(4) It used an ME which decomposed into two parts. one (sum of the row

moments) dependent only on column permutations and the other (sum

of the column moments) dependent only on row permutations. Conse-

quently optimization of the ME could be achieved in exactly two

passes, one finding the optimal column permutation, the other finding

the optimal row permuta tion. These two passes are carried out com-
pletely independently of each other, and in particular, it is not

necessary to alternate between row and column permutations, as in the

Moment Ordering Algorithm. This decomposition of the ME into two
parts was an attractive feature later used in the Bond Energy ME

(r3w-bonds and column-bonds being optimized separately).

1. Dr. Gould had earier suggested use of the matrx correlation coefficient as a guide to the peirtemance of the
Moment Ordering Algoilihnm. but there was no particular pattern that one hoped to drive the matrix into.

4. Cycling can never occur in on alsorithm which Iteratively optimizes an ME, fot the ME is monotone from one
iteration to the next. There would still be non-unlquciess if a few permutations achieved the global optimum; this could be r
expected only In degenerate cases, and norm.lly would not occur. Permutations achevi" local (rather than global) optima of .
the ME could be discarded on the bdass of their i'ferior MEs, u that many fewe "alale" olutions could be etpeted than it
the Moment Ordering Algorithm.

5. At least a factor of throo slower than the Bond Energy Algorithmn and thcxeore impractical foe Nublems luger
than about 25x23.

6. Wble the algorithm is always sucxcuful at putting a matrix into ner blo• diagonal form, itt is Iti possiblk, it had
two tjor weakneses of (1) sensitivity of the reult to the stmatiq point, and (2) an Usability to handlo the chokxerboard cda,
thown "i Fig. 6.
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B. MEASURE OF EFFECTIVENESS FOR MOMENT COMPRESSION

As stated above, the measure of effectiveness for Moment Compression is the sum of
Sthe mean-square7 column moments and mean-square row moments. For any NxM non-

negative matrix (bN), the ME is

N M
ME(b)= ri + cj

Si=l j~l

where ri is the row moment for the ith row:

M
bk 2

.U k I.•_:-ri (b) =ri = bi

•i.j I = M i

;• MSbin

Im=l

and cj is the column moment for the jth column:

-•..,

N

N bkjk 12
•i= ~ bu[bij i..

NI

S i --- I "

-•Z M
•- • bmj

Let A= [aij] ke the original NxM non-negative matrix and let [bij]= [Tow(j)]
denote the matrix whose ith column is the ,j)'h colunn of A, whcre r -I(l). ir(2),... i (M)

denotes a permutation of 1 I. 2 .... M I . The problem of finding the best column permutation
of A is given by

7. W1Ib1 any own tuo"nI can be udd. tle Ww•d mormal i the 41*mp•1.
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I

N
min ri(b)

•r i=1l

M
i, jk= I

where
[ Qjks= • irj28jk airais~k

N 1Qjkrs I < -r - lksM

M
and wi j aij denotes the row sum for the ith row.

Finding the best row permutation leads to a problem completely analogous to that of finding --

the column perMutation. 4

The above problem involves a minimization over all M! possible permutations. It is
called a quadratic assignment problcm because of the double appearance of Ir in the minimand. 41

The problem of ME optimization is consequently equivalent to solving two quadratic assign-
ment problems. (Appendix A demonstrates that the same holds true for the Bond Energy ME.) ,

As discussed in Appendix A. exact algorithms for solving quadratic assignment prob-
lems are too time consuming to be practical for M larger than 15 or 20. Consequently, an
approximate algorithm was employed to find a near-optimal solution. The approximate
algorithm is a gradient search in M2-dimensional space, and is described in the next section.

C. GRADIENT ALGORITHM FOR APPROXIMATE ME.OPTIMIZATION 1

The minimization problem posed above can be rewritten as

min Z(X)

XePM

where I'M denotes the set of all M ! possible MxM permutation matrices i.e., all matrices of the
formXi 6j, (i)) and where 3

|.
-z6b



F

M
Z(X) = X QjkrsXjrXks = (i,X) + (XCX)

jkrs =1

M N aikj2l
BX) jk•=I -k~ i Wl- ' J jk

(B,X) = 2 [ i(XrCX1=jkrs1XjkXrCjkrs= aikaisr

(ks= X)_i= M XIkXrs

Note that C is negative semi-definite:

(y.C,y) ! o for any MxM matrix y.

The gradient search was motivated by a paper by Dem'ianov (Ref. 23) Exploiting thu
quadratic dependence of Z and the negative-definiteness of C, one writes

Z(X) Z(X°) + (X-X0 , grad Z(X°)) + (X-X°,C,X-X°)

where the last term is non-positive and where

M

grad Z(X°)jk = Bjk + 2 jkr Xo

"rs

Consequently if X is chosen to minimize (X, gra Z(XM)O, one finds Z (X) < Z (X°), with

equality usually implying that X0 is local minimum of Z.V The following grvdient algorithm is

the result:

Step !. Select an initial permutation matrix Xold.

Step 2. Compute grad Z(X~ld).

Step 3. Solve in (X, grad Z(Xold)) for the minimizing permutation matrix
XfPM

xnew

Step 4. If Xnew : X0ld, set XohW Xnvw and return to Step 2; if Xnew =

Xoid, stop.
The algorithm converges to a permutation matrix which generally is a local minimum of Z(X). 8

The time consuming portion of the algorithm is Step 3. The minimization in Step 3 is

[he baii: pupopety i~t thaI ff (X-°�.�,_0
_ Zr(X°))?0 (or AHl permutation matrices X, and if (X-.X, c',X-X 0, t fr

zLl X for which there il itrict 0quality. then K0 ii a lOWcal inIMnun or Z(., where the domaiin of' Z iD now extended to thew wi
01 au 4toibly tocliadi: n•nt¢•,ce
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MI
min grad Z(Xo) , )

where 7r ranges over all permutations of t1,2 ...2, M

This class of problems is known as linear assignment problems and is most readily solved by I
the so-called Hungarian method (Ref. 32). Unfortunately, the labor for the Hungarian method
is proportional to M3 or M4 , and since several linear assignment problems must be solved, the [I
computation time for this gradient algorithm turns out to be excessive for large M.

D. COMPUTATIONAL RESULTS j
The gradient algorithm described above was coded in order to provide near-optimal

solutions to the Moment Compression problem. The gradient algorithm is used twice; once tot
minimize the sum of the row moments and again for the column moments. The major
computational effort goes into solutions of successive linear assignment problems. j

The primary advantages of the gradient algorithm are its simplicity and (as the
following two examples illustrate) its excellent capability for putting a matrix into near I
block-diagonal form when this is possible. The primary disadvantage is the large computer time
(a factor of three greater than for the Bond Energy Algorithm), rendering the method
impractical for matrices larger than i."out 25x25.

The excessive computational eifort ariozs from two sources. One is the need to solve
successive linear assignment problems, each of which is time consuming. The second is the
existence of several local minima for Z(X), with the consequence that the final data ordering is 3
somewhat sensitive to the initial data ordering. (The Moment Ordering Algorithm has similar 5
properties.) It therefore is necessary to start the algorithm at several randomly-selected initial
permutations in order to achieve a final permutation for which Z is close to its global
minimum. The need for multiple starts increases the computational effort many-fold.

c. First Example

A 16x16 example from Ref. 33 was solved with the gradient algorithm for moment
compression. In this example, the 16 most frequently occurring non-trivial words have been
extracted from a long conversation. The input matrix, A-I, is shown in Fig. 27. A "1" is placed
in row i and column j if words i and j have coincidentally occurred in two or more sentences,
and a "0" is placed there otherwise.
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JL

LU
-0

D z

-J ~~ U. LL c -~ u~ o = ~ -

LIPS 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1
LSED 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1

BUS 0 01 10 101 0 10 10 10 0
TRACK 0 0I110 0 1 010 1 110 11
PERFUME 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1
BEACH 0 0 1 0 0 1 0 1 0 1 1 1 0 1 0 0
TENNIS 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1

HOTEL 1 11 01I1 0110 0 10 1 01
COURT 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1
MOUNTAIN 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0
CLUBHOUSE 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1
HOT I I 1 1 1 1 0 1 1 1 0 1 0 1 0 1
SWIM 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1
VIEW 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0

FIELD 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1
LEG 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1
II -13-69-5

FIGURE 27. Initial Word Relationship Array, Matrix A-I

Since the input matrix is symmetric, the problems of choosing permutations to
minimize the row or column moments are identical. It sufficed to find the optimal column
permutation, and to use this permutation on both the rows and columns of the matrix. The
problem of row moment minimization was solved 40 times, each time starting from a
randomly chosen permutation of the columns. Two solutions are taken as identical if they
differ merely by reversal of the order of the 16 words.

The results were as follows. Nine of the 40 starting-points led to the final matrix, A-2,
shown in Fig. 28, with the lowest ME. An additional I I of the 40 starting-points led to a final
matrix (with the same ME) which differed from A-2 only by interchanging of the variables
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z
z U.' CK
I- 0

MOUNTAIN 1 I I 1 0 1 0 0 0 0 0 0 0 0 0 0
VIEW 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
BUS I I I I I 1 0 0 0 0 0 1 0 0 0 0
BEACH 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0":HOTEL 0 1 1 I 1 1 1 1 I 1 I" 0 0 0 0 0 1

HOT I 1 1 1 1 1 1 1 1 1 1 0 0 0 0
PERFUME 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
LIPS 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 p
BED 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
COURT 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
LEG 0 0 0 0 1 i 1 1 1 1 1 1 1 1 1
TRACK 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1
CLUBHOUSE 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1
FIELD 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
SWIM 0 0 0 0 0 0 0 0 0 T I I 1 1 I 1
TENNIS 10 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

S.......Matrix A-2

z V
I- w0 on

Z- -

-j =L 0 U LL (/n U k~- I.-.

VIEW I 1 1 1 I 1 0 0 0 0 0 0 0 0 0 0
BEACH I 1 0 0 0 0 0 1 0 0 0 0
MOUNTAIN 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
BUS I 1 1 0 0 0 0 0 0 0 0 0 1
HOT 1 1 I 1 I I I 1 1 0 0 0 0 1
HOTEL LI 0 1 1 11 1 1 1 1 0 0 0 0 0
LIPS 0 C 0 0 1 1 1 1 1 1 1 0 0 0 0 0 I
PERFUME 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
BED 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
COURT 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
LEG 0 0 00 1 1 1 1 1 1 1 1 1 1 1 1
FIELD 0 0 0 0 0 0 0 0 0 I 1 1 1 1 1 I
SWIM 0 0 0 0 0 0 0 0 0 1 1 1 I 1 1
CLUBHOUSE 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 I
TENNIS 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
TRACK 0 0 1 1 0 0 0 0 0 1 1 I I I 1 1

Matrix A-3
FIGURE 28. Reordered Word Relationship Arrays
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"bed" and "lips". Since these two variables have identical rows and columns, it is under-
standable why ambiguity arises about their ordering.9

Inspection of Fig. 28 shows that the algorithm has partitioned tie 16 words into three
subjects: vacation, sex, and sports. The transitional words between these three topics of
conversation are evidently hotel, hot, court, and leg.

All remaining 20 starting-points led to a ME which was at least II percent o'ighef." 0

Inspection of the next-to-best permutation (the one with an ME II percent higher than that
of matrix A-2) showed that the gradient algorithm converged to the wrong local minimum of
Z(X), in which only one of the three topics of conversation (sports) is clearl.- identified.

It is believed that Matrix A-2 (and the variations obtained by permuting identical rows)
achieves the global optimum of Z(X), although this is not certain. It must be recalled, however.
that the primary goal is the discovery of informative patterns, not rigorous optimization of the
ME. For example, the rearrangement proposed by Giuliano, Matrix A-3 in Fig. 28, is just as
pleasing as A-2, even though its ME is not as good. The point here is two-fold: (I) data
rearrangements with near-optimal ME may be as pleasing as those with optimal MEs: (2)
ME-optimization algorithms can fail to identify all informative patterns, especially patterns
which are not local optima for the ME.'

The Moment Compression Algorithm is considered to have worked properly on this
example because it produced a pleasing pattern. The sensitivity of tile gradient algorithm to
the starting point was not a serious problem, for 20 of the 40 starts led to a good answer.
Note, however, that a mere II percent degradation in the ME led to a seriously degraded

pattern.

The main criticism of the gradient algorithm for Moment Compression is its excessive
computation time. Each usage of the algorithm required 3 to 7 gradient steps (i.e., solutions of
3 to 7 linear assignment problems) at about 2 seconds per step. Tile algorithm therefore
required about 10 seconds per starting point.12 Since 40 starting points were chosen at
random, to ensure high confidence in achieving a global rather than local optimum,' 7
nifltes1 4 were required to solve this problem.

9. It should be pointed out that this example exhibits considerable degeneracy. Examination of Fig. 33 reveals that
rows 7-9, rows 10-11, and rowi 14-16 are identical. The ME will be invariant under permutatlon% of identica. row%. In
addition, rowi 1-4 and rows 5-6 are nearly identical; the ME will undergo only minor changes it theware interchanged.

10. Ihe ME is here definedas the foot-mean-%quae row moment.

ME t i6 ri

16 i= 1

I1. Since the %turting points never led to A-3, A-3 probably is, -t a ltwat mniinimum for ZtX t.
12. By contrast, the Bond Energy Algorithm requires only a few seconds per %tarting point.
13. By contrast, the Bond Energy Algorithm is rather insensitive to the smarting poet, s.o that lewer starting point, tat

most 16, and probably much less) need bv etplorod.
14. On CDC 1604.
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It may be possible to cut the running time by a factor of 2 or 4, since a "good" starting
point may reqL'ire fewer gradient steps than a randomized one, and by using much fewer than I40 starts. Neverttieless, the running time for a 16xI16 problem (on the order of minutes, and

doubled if the mati-x is not symmetric) is disappointing when contrasted with the running 1
time for the Bond Energy Algorithm. Consequently the gradient algorithm for Moment
Compression Algorithm is probably impractical for problems larger than 25x25 or so. It works
well, but is too slow.

2. Second Example's

A second example was run in order to test the ability of the gradient algorithm to
generate clumps of large numbers when the matrix elements were not restricted to 0 or 1. The
initial matrix is the 1Oxl0 matrix denoted as B-1 in Fig. 29. Since B-I is symmetric, it sufficed
to find the optimal row permutation, and to use this permutation on both the rows and I
columns of B-1.

A B C D E F G H I J

A 5 4 1 0 4 1 1 0 3 1
B 4 5 0 1 3 1 1 0 4 1C 1 0 5 0 1 3 3 0 1 2t :•
D 0 1 05 0 0 0 4 0 1

Cl 05 1 32

E 4 3 1 0 5 1 0 0 4 1
F 1 1 3 0 1 5 3 0 1 3SG 1 1 3 0 0 3 5 0 1 2

H 0 0 0 4 0 0 0 3 1 01 3 4 1 0 4 1 1 1 5 1

S1 ' 2 1 1 3 2 0 1 5 1
FIGURE 29. Initial Similarity Matrix B-1 I

The gradient algorithm was used with 60 randomly chosen starting points. Four
distinct MEsl 6 were obtained, with values 1.846, 1.987, 1.988, and 2.314. TIie frequency of

15. This is tho iame example as in Figs. 7 and 8.
16. The ME is hore deained as the toot-mean square tow nmomenl..zm.

ME 1 2 r
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these MEs were, respectively, 36, 12i 8, and 4 (sum of 60). The matrices corresponding to the

four MEs (the best four permutations1) were respectively, B-2, B-3, 13-4, and B-5 and are

shown in Fig. 30. These four MEs are fairly close to one another and it is apparent that the

patterns in B-2, 13-3, B-4, and B-5 are essentially equivalent and equally pleasing; all four

matrices succeed in identifying a 2x2 block of large numbers (variables H and D), a 4x4 block

(variables A, B, E, and I) and a 4x4 block (variables C, F, G, and J). The exact order of the

blocks, and of variables within each block differ, but one would be indifferent to such

unimportant differences (i.e., to the arrangement of the stray l's) since the identification of

the blocks of primary blocks is what is significant.

The computation time for this problem was about 3 seconds per starting point. The 60

starting points consumed about 3 minutes total computation time, 8

Summarizing, the gradient algorithm applied to this problem succeeded, in all 60 of the

starts, in identifying the major variable blocks and produced informative patterns. The four

best permutations produced nearly equal MEs and equally informative patterns, without any

obvious way of choosing among them. The algorithm is considered successful, but rather slow.

for this problem. It correctly "factored" the main variables, but was very timc-consumfing

compared with the Bond Energy Algorithm.

17. T w o pa rnt tatlio nm w otc " Wztda t c•uivakl~tz it ' c •ch %:oLu l bi ob tw iW t h~ot the otha -tty toolyt•| revv¢-',lin the .

OWN~c of the 10 lw%~ WWa L. unnis.
18. O•) C'W 1604 covputa,

73

7"" • • : e m '' = I "-: ''" " m "- , . . ..,. . . . .. . .. . .. ..



II

I,
I

H DB 8 E AJ F GC H D JG CF I B AE
H 5 4 0 1 0 0 0 0 0 0 H 540 0 0 0 1 0 0 0

D 451 0 0 0 1 0 0 0 D 451 0 0 0 0 1 0 0
B 0 1 5 4 3 4 1 1 1 0 J 0 1 5 2 2 3 1 1 1 1
I 1 0 4 5 4 3 1 1 1 1 G 0 0 2 5 3 3 1 1 1 0
E 00 3 4 5 4 1 1 0 C 0 0 2 3 5 3 1 0 1 1
A 00 3 4 5 4 1 1 1 1 F 00 3 3 5 1 1 11
J 0 1 1 11 5 3 22 I 1 01 1 5 4 3 4
F 0 0 1 1 1 3 5 33 8 0 1 1 1 0 1 4 5 43
G 0 0 1 1 0 1 2 3 5 3 A 0 0 1 1 1 3 4 54
C 0 0 0 1 1 1 2 3 35 E 0 0 1 0 1 1 4 3 4 5

Matrix B-2 Matrix B-4

H D G J C F I B A E G C F J D H I A B E

H 40 0 0 0 0 0 G 5 3 3 2 0 0 1 1 1 0
D 1 1 j 5 0 10 00 1 00 C 35 32 0 01 1:01
G 0 05 2 33 1 1 10 F 3 3 5 30 0 1 1 1 1

SJ 5 2 3 1 1 1 1 J 2 2 3 5 1 0 1 1 1 1
C 00 3253 10 11 0 0 0 1 5 4 0 0 0
F 0 0 333 5 11 11 H 0 000 4 5_100 0
I 1 01 1154 1 5 4 4 4 1110 1 5344
B80 1 1 10 14 5 43 AII 1 10 0354 4I|
Ao001 1 11 3 4 54 B 1 0 11 1 0 4 45 4

E 0 001 11434 5 E 1O 11 10 04 44 5

Matrix B-3 Matrix B-5

FIGURE 30. Reordered Similarity Matrices

I
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APPENDIX A

FORMULATION OF THE BOND ENERGY ME OPTIMIZATION
f. AS TWO QUADRATIC ASSIGNMENT PROBLEMS

I

Ii.

Preceding page blank
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FORMULATION OF THE BOND ENERGY ME OPTIMIZATION

AS TWO QUADRATIC ASSIGNMENT PROBLEMS

"The purpose of this Appendix is to show how the problem of ME maximization can be

rigorously formulated and solved as two Quadratic Assignment Problems (QAPs). This form-

ulation is presented only for theoretical interest, because published algorithms (Refs. 21. 22,
-23) which find truly optimal solutions to QAPs are too time consuming to be practical for
large problems.' While approximate algorithms have been published! (Refs. 24, 25, 26, 27)

which find near-optimal solutions to QAPs, it was not believed worthwhile to explore any of

them, because none exploited the nearest-neighbor feature of the function being optimized.

Only the sequential-selection approximate algorithm described in this paper exploits the
nearest-neighbor feature, and this latter algorithm is believed to he much faster, more

convenient, and just ae satisfactory3 as the published approximate QAP algorithms.

Suppose the original non-negative matrix Iaý1 is M x N with horizontal and vertical

Sbond energies contributing to the ME. The ME then consists of the sum of two terms, namely.
the row bond energies plus the column bond energies. Two optimization problems must be

solved for ME maximization. One seeks a permutation of the columns of I aij I which maximizes

the row bond energy, the other seeks a permutation of the rows of I aij I which maximizes the
column bond energy. These two optimization problems can be carried out independently of

each other. When both are completed, the optimal permutations of both rows and columns are

known.

The two optimization problems are mathematically equivalent, Only the problem of

maximizing the row bond energy is presented here. This problem requires selecti,.n of a

permutation r I[( 1), v(2) .... *(M) I of the integers I 1, 2. M I which maximizes

N M Il
-1 i bilbi2* + b [bi,j- 1I + biMbi, M I (A- I

1. Computer unles on the order of oneof reve.Wl innutes ae required for 15,I1 1natt-•-.jndr irte the fourth tand
fifth powa of the matrix size.

2. An extensive bibiography is cuntairn% in Ref. 26.
3. The satisfaction with the Bond Energy Algorittuo is not based prineirhy on how losc it conics to achivvini; tIe

giob'al optliim in Eq. (A-2) but rather on the P003int pat te is of wlumnp whish It pfoducv%.
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The term within braces is twice the bond energy for the ith row of ,ibU], where [bi] = [air(j)]

denotes the matrix whose i th column is the z(j)th column of (aij] . The mathematical

problem may be rewritten as M M
-max M M Qjk')'k) (A-2)

where N
if: N

Qjkrs= airais[k, I.1 + 6 k,j+l] (A-3)

1 <j,kr,s<M

The maximization in Eq. (A-2) is taken over all M! possible permutations. This type of

maximization is known as a quadratic assignment problem because of the double appearance
of ir in the maximand. As previously noted, published algorithms exist for finding both

optimal and near-optimal solutions to Eq. (A-2).

INTERPRETATION OF ME OPTIMIZATION AS TWO TRAVELING SALESMAN PROBLEMS I
The quadratic assignment problem formula'ed in the previous section is actually a

special type called the open-loop traveling salesman problem. Let

N
drs= a arais= dsr

denote the scalar product of the rth and sth columns of [aij. Then, the maximization in (A-2)

is equivalent to
M-1

max • d0j)lr( +1 ) (A-4)I i --jlI

tV If one interprets drs as the distance from city r to city s, the problem in Eq. (A-4) is to find
[ the salesman's tour (from city ir(l) to w(2) .. to city w(M)! of the M cities whici has the I

longest distance.s Note that the tour origin is arbitrary and that the salesman is not required to

*• return to his origin. This tour is therefore called open loop.

4. It neceniy, oadded aall dI ic o aI to make them positive.
S, Subtractkom of owy dill from a lug© pottve coailaal lids to in equivalent psobleomo miniaixii.5 the tour

lun~th.
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BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO
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PROOF THAT THE BOND ENERGY SUBOPTIMAL ALGORITHM WILL PRODUCE

BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO
BY ROW AND COLUMN PERMUTATIONS

The purpose of this appendix is to prove that the sequential selection bond energy

algorithm will put a matrix into block factored form if it is possible to do so by row and

column permutations.

DEFINITION I

A non-negative matrix A whose elements aij relate row entity i to column entity j is

called block factorable if the row entities can be decomposed into q disjoint subsets

Ri,.RI,R2 . Rq, and the column entities decomposed into q disjoint subsets CI,C2, Cq with

the properties:

A() lfentity ie Ra- thenaij=0

unless entity j e Ca, I < a < q

and if entity j f Ca. then aij = 0

o.nless entity i e Ra, I < a q

(2) For eachu. the submatrix [aij ] iea, J ('a
cannot be further decomposed.

That is, A can be factored into q biocks if the row entities and column entities can each be

partitioned into q subsets such that: (I ) ertities in one row subset interact only with entities in

the corresponding column subset and (2) it is impossable to decompose the subsets further.

DEFINITION 2

A block factorable matrix is said to be in block factored fornil when all the -ow

entities contained in each Rd lie together on the vertical axis of the matrix and all the cotuniv

1. Figure 4 "tW a Ifutri.1% in b03Ak (ttitatd ftom.
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I
entities contained in each Ca lie together on the horizontal axis of the matrix. Clearly, the

matrix A is block factorable if, and only if, it can be put into block factored form by row and I
column permutations.

LEMMA 1 I

Assume A is block factorable. If row entity i of matrix A is rontained in R and row I
entity j is contained in RP with a#:f,then the scalar product of row i with row j vanishes.

Proo._fI

For any entity k, aik=O unless keCa and ajk=0 unless keC#. Therefore, I

aik aJk=0 for all k since Ca and CA are disjoint.

LEMMA 2

Assume A is block factorable and select any Ra which contains two or more rows. No

matter how Ra is split into two distinct subsets, it is always possible to choose one row

from each subset such that the scalar product of the two rows is positive.

ProofEo__ I
If such a choice cannot be made, then the submatrix J [aij], ieRa, Kela • is

decomposible, violating Definition 1. 1
THEOREM

If A is block factorable, then the sequential selection algorithm will put the matrix into

block factored form, and will do so by building one block at a time. w

Proof

If the first row laid down came front (say) RI, then the next row to be laid

down will be one of the remaining M-I rows with the greatest scalar product

with the first. Since (by Lemma 1) all the rows not contained in RI have I
vanishing scalar products with the first row, and since at least one (by Lemma

2) of the as yet unplaced rows from RI (if any others exist) has a positive I
scalar product. then the second row to be laid down will come from R1. By

86
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repeating this reasoning it is clear that all the rows from R, are laid down
before any other rows are laid down. More generally, one subset, Ra, of row
entities at a time is laid down and all the rows contained in each Ra lie together
in the matrix.

Identical reasoning can be applied to show that the columns are also laid down
with all the columns in each Ca lying together. Therefore, by Definition 2 the
matrix will be put in block factored form.
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PROOF THAT THE MOMENT COMPRESSION ALGORITHM WILL PRODUCE

BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO

BY ROW AND COLUMN PERMUTATIONS

The assertion here is that the minimum of the M•I of a matrix which can be placed in

block form via row and column permutations occurs whten the matrix is in block form, and

does not occur when rows (or columns) of one block are separated by rows (or columns) of
another block. Consequently, rigorous minimization of the M, must put the matrix into block
form. Since the gradient algorithri for moment compression will find a global rather than local

minimum of the ME, if sufficiently many starting points are used, it follows that the gradient

algorithm will put a matrix into block form if this is possible.

It suffices to examine how column permutations can minimize Zi ri. The basic idea of

the proof is that if the columns from one block are separated by columns from another block,

then removal of the extraneous columns, reuniting the columns from the first block, and
reinsertion (at one side) of the removed columns will strictly reduce 1i ri, hence reduce the

ME. Thus, the ME is at its minimum only if columns from the same block are contiguous.

An example is provided by Fig. C-I which shows the 5 left-most columns of a matrix.

At least one X in each column is positive. Columns A, C, E form a block; no column to the

right of E lies in this block: and columns B and D are from other blocks.

The following theorem shows that if column D is moed out to the right of the block

(producing the column order A.B,C,E,D), then 2;iri will decrease. Similarly, movement of

column B to the right of the block (producing the column order A,(',E.B,D) will reduce Iiri

further.

1.

ME + ri moment arm for row i
i M moment arm for column j
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COLUMN: A B C D E

X 0 X 0 X
X 0 X 0 X
X 0 X 0 X|

0 X 0 X 0 I

0 X 0 X 0

xo x o x

0 X 0 X 0

FIGURE C-1. Sample Matrix I

The general procedure is to identify the left-most column block whose columns are not
placed contiguously, 2 and to move the right-most extraneous column3 from the midst of the j
block to the immediate right of the block. Repetition of this procedure produces a column
ordering which places columns from the same block in contiguous positions. Since the

procedure leads to strict decreases in Tiri, it shows that the ME achieves its global ME only I
when the matrix is put into block factored form.

The theorem which follows shows that each ri is decreased if the zeros which are
interior to a row are moved to an edge of the block, and is unchanged if a zero at one block

edge is moved to the other block edge. Thus moving columns B and D to the right of E wil
reduce

3

ri=

because the first 3 rows have an interior (or possibly left edge) zero at column B, and an
interior (or possibly right edge) zero at column D. Similarly,

71

is also decreased by such a transfer because columns C and E provide interior zeros to rows
4-7.

2. ,ia ,. this li block ACcF92
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THEOREM N NLet Wj:O > W0I,= jWj

j=1 j

N
S = L[ -J] 2  moment for the vector W.

j=l

Suppose for some k, 2-<k<N-1, Wk'-. Let * refer to a rearrangement whereby Wk has
been moved to the extreme right, and the vector then closed up:

S1 •<j <k- IK"Wj | i O 1 k<<-= (C-1)

j=N

N N
-iwj W where0- WX
J- j=k+l j (C-2)

N
S = E Wj* [j 7*] 2 = the moment for tie vector W*.

j=l (-3)

Then S* < S with equality if and only if Wk is an edge zero (that is, if Wj=0 for all j-Q,. or if
WJ=O for all jAk).

Proof:

Setj"= E + F where

k-I k-I
Em E wlj<(k-l) . wj - (l- 03)(k-1)

j=1 j=I

N NF= wj i> (k +l I wi =1(k + ).(-)

j-k l j=k+l
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Insertion of Eqs. (C-1, C-2) into Eq. (C-3) obtains ,
N

s*-S=00-0) + 2 N wj-j) i
J + I

= (1-0) + 2 -2F = -(0) + 2 PE + 2 I

Insertion of Eqs. (C-4, C-5) produces, because 0 < ' 1, the result

S* -S -3j3(l-p3) < 0 withS* =S only when • is 0 owhich occursonlyif wkisan

exterior zero. Thus S* S only if wk is an exterior zero. The converse is easily proved. QED.

Note that with the choice j

Wj aý/ N tm=l

we find S =ri moment for ith row of [ai1. The theorem therefore states that the *

"rearrangement (namely removal of an interior zero from the ith row of 1a4j]) will strictly

reduce ri unless the zero lies at an edge.

ILi
i

I
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THE BOND ENERGY COMPUTER PROGRAM

A. OPERATION OF THE PROGRAM

The computer program for the Bond Energy Algorithm consists of two separate parts.
The first part of the program reorders the columns while ihe second part reorders the rows.
Figure D-1 shows the essential program logic for selection a-.d laydown of the rows to obtain a
new order with a large NME. The logic for the column selection is identical. It was found that
in order to examine a number of local minima it was necessary to initiate tnc prog'am at
several starting rows (or columns). However, as pointed out in Chapter I of Part I1, almost all
starting points (rows) resulted in a "good" solution.

B. CARD INPUT FORMAT

The input format that 's described here is for arrays with integer elements. The only
change that would have to 1 ; made to accommodate decimal entries is in the input and output
formats for the initial and reordered arrays.

a. Card I Format (415)
MM - number of rows in the matrix
NN = number of columns in the matrix
IFZI = an increment to determine the starting columns or rows.

If IFZI = 5 then the algorithm is run K times beginning

with row I then row 6, and continuing in increments of
5 until K*IFZI + 1 > NN or MM

FSYM 0 or blank if the input array is not symmetric
I i if input array is symmetric

b. Cards 2 through MM + I Format (8011)
(NA(I,J), J = 1, NN) is the 1Ith row of the input matrix. T1his card
is repeated for all MM rows.
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C. PROGRAM OUTPUT

The computer program GROUP 2 consists of the following output information:

(1) A printout of the input cards.

(2) A printout of the new row and column orderings at each step in the
sequential laydown procedure.

(3) A printout of the final reordered matrix.

(4) A printout of the final horizontal and vertical MEs.

* 9,

99



BOND ENERGY ALGORITHM PROGRAM

COMMON Mm,NN
COMMON NA(qO.90),K(gO) ,LtgO),ME(9O0 ,NPOS(90),P4SW
SET IN!rEw 0 w L

IDIM go9
READ 1j0OMM,NN':Fz1,IrSYM

IF(IFSvm.CO.*O, IrSYMmfl

100 FORMAY(4151

READ ll(AI,~,aN
Do 12 J81,14
IF(NAt!.J) .EQ.-0) NA(I,J18 0

12CONTINui

PRINT tO2,(NA(I,*J)#,,'j#NN)
CONTINUE

101 FORMAT(Sn11)
102 FORMA7E1K,99121

DO 22 KKNI,NN*.ZI~

DO 2 ?ujmiml
2 KjZ)uI

DO 3 jusiNN
3 .10~ a .ON Wi

IEmPI a L(1.)
Lit) 8 1t
LIKKI a ITEMPI

NYCKBO I TIC460

D~lO 150 NONm#N

00 00 sN C#N

00 111 NaNCOUNUN

12 000JNIN

DO 211 tatomm

G0 aKill a LWJ

14 a Kill o 001*11

A ~IFIN,(o.o1sO, TO 212
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IF fNAEGLCQ. 0 ) GO TO 213
IF (NAiw).Eg.Oi GO TO 212
NSUM a NSUM * NA(M) * N~AWQ

212 IFMCO.NCOUNTIGO To 211
11 (NA(mk.EG.01 GO TO 111
NSUm a NSUM 4 NAIM) * NAt GI

213 Ir(NCO.A.OR.N.CONCOUNT) GO To 211
IF (N~tilo.01 GO TO Pit
N$Um a P4SUm . kA(ml * AM

211 CON~TINUE

If INSUPO.LY ME( J) IGO TO 210
Zf(NCOUjNT.rO.1U GO TO 214

If INSU . NE. ME (J) I Go TO 214 4
ZrcN.Eo.0.aR.N.EO.NCOUlT) GO TO 214
GO TO 71A

214 CONTINHE.
MEt J)uISUMj

210 CONTINIIE

200 CONTINUEI

MEMAXOOIEI NCI)

NPAmVOStNC1I

NC 2~ NC OiN!

DO 220 !ENC2*NN

IFlMEfI..LT.mCNAX)GO TO 220I
IFCNEC!, ,EG.wE "AX) CALL EI21(I.IMAX)
IFINSW.NE.il GO To 220
IMAXV!
MEMA K ME (I
NPMAXGNPOSI I)

220 CONTINUE
MgjaI4(j *M[MAYKi000
IF(NPMIV.N[.NCOUNT)GO TO 141
AINIOLC MAX)
LlIMAX,.LfNAPmAv.11
LlNRMAK.1 )sNNl
Go TO ise

140 IFINPMAYNE.01 NTICKONTZCK*1I
NPj*NPmAv.1
N9AVENLI!MAXI
NP 29NP .1
FOR 149 I.T1MAX.NP201
1110-II

165 CONTINOE
L INPII @NSA VI

191 PRINT 105#0LEII#DZM*1,# IUII4NN

IFIT~svM.[O.o) GO TO 1513
Do 192 !.1,NN

15 2 :11OIE I II
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GO TO x st

Il1 CONTINUE
I05 FoPmPTq401S,

Do 350 mCOUNTsismi
MCISMCOUIN?.l

DO 400 1 umejamm

DO 410 mso,MCOU.NT

D0 411 JjPjjNN

G 2 K(!) L*

N 2 KI(M+1 + 0

I fIPF(M.EO.rI~GO TO 412
IF (NA(G).ro.O) GO TO A13
IF (NA(M).EO.O) GO TO 412
MSUM a P4SUM * NA(") * NA(G)

412 IftMEO.NCOUNT)GO To 4i3
IF (NA(N).[Q.01 GO TO Ali
MSUM a mSUM * NAWN * NA(G)

413 jpcu.CO.fl.6R,N.E0.mCOuNT) GO TO 4114 IF (NAt4).EQ.0 1 GO TO 411
MSUM a mSUM * 'A(W) N A(N)

411 CONTINUE

1r(MSUPiLY.mE(I)jGO TO 410
IP(MCOUNT.CQ.il GO TO 414
I7(MgShi.Nf.ME(!)) (10 TO 424
IF(K.E0.fl.0R.m*EQ.MCOUkT) Of TO 641
GO TO 41A

414 CONTINUE
ME(II',MSUM
NPOS( I )am

410 CONTINUE

400 CONTINUE

NPOAEUNPOS( MCI)
.JMAXmMei

MC25"COUNY*2
DO 410 !UMC2,mm

Ip(ME(I-.Lt.MCMAX)CO TO 420
Z~g~g!.g~MCMX)CALL C6IiJIIJMA
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NPOiAXS0sPOSf I)
420 CONTINUE

ME28ME24P4EMAX'.DOOO
IrINPM1X.Nt.jiCCUNT)G0 TO 340

M1K(JMAX$,KN) X%
KgNJMAKV3KNP)4M l)

ra To 35 A
340~~ ~~ MpNMxN,~ITICKaMTICK*l
P4P1NPiMAX.NE

MSAVEUxt (JMAX)

FOR 34S ,jgjmAX,mP2-1

345 CONTINI'C
KIMPJ )aMSAVE

351 Do 352 G uNN
352 LIG) a L(GI/nIDm oi

PRINT 5031 ,().N( KtI)jvN,LJ) J3.N

500 CONYINU'E
PAINT 5o2,NTICK#NTICKmE1,M12

22 CONTINUE

S0l FORM AT( P 216 i ,5 7I i/

E NO

SuBROWTINE C021(IIIm)
COMMON MN,*NN
COMMON eO.o,(O5t9iM(OiOS9)NS
SET INriV ae a K MU a.

wNposaII1.EQ.NPOS(IN1140 T0 701

flEyURN i
701 DO 702 ?Samm

G * Kill 0 Lill)
M a Kill 0 LtZ")
It tNAIQ).NE.NA(Mll 11O to ?$I

702 CONTINUt
RE TURN

703 NSUMIUC
NSUM250
to 704 X1400
G a 9t?1 a Lill)
K a Kill * L(IZm

NSUMI *NIUMi * 6 G

RE TURNI
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SUBROU1!IJg EG2jCJJ,jM)
COMMON MM.NN
COMMON AO. 0  W9bIOM1CPS ),W
SET !INrcX 0 a N~M L

NSWwo
IF(NPCSijl.J).Q,NPOS(JNI)GO TO 701
RETURN'

701 DO 702 lai,NN

8 K(.JM) L(T

IF (NA(a).NE.NAgm)) GO TO 703
702 CONTINUE

RETURN

703 NSUmlen
NSUM200
DO 704 !aI,NN
G N K(Jjj *01
m 8 XtJM) * Ll
NSUMI a NSAl 4 NA~(G)

704 NSUMZ a AJSUM2 *NAM

711 NSU.'i.L?.NSUM2)AISwIm
RETURN
END

SUBROUTINtEO£0
TEMPORARY SUB
PRINT goo

900 FORMAYT.FNTER (0101
END
END
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THE MOMENT ORDERING COMPUTER PROGRAM

A. INTRODUCTION

Two versions of the program are available. One, which handles arrays of size up to

100x 16, reads the arrays directly from cards. The second, which is identical to the first except
in its input-output procedures, can handle arraysup to 100x100and reads its arrays from tape.1

Because the two are so similar, only the first will be presented here, most of the discussion,
however, applies equally to both versions. A flow chart showing the main program logic is
given in Fig. E-1. The following section provides instructions for the use of the program-

Section C describes the program output.

B. INSTRUCTIONS FOR USE OF "MOMENT"

The following are the instructions for use of the moment program.

(1) Arrays of size up to 100x16 may be analyzed with the card input
version of the program; up to 100x 100 with the tape input version.

(2) Arrays for the card input version are punched onto cards, one row per
card, as fivw-place floating-point numbers.

(3) As many separate arrays as desired may be anadvzed in or- computer

run. Each may be so!ved once, or, if desired, any number of times, with

the starting ordering chosen at random. In the latter case, the overalt
averaged solution is given as well as each individual solution.

(4) 'lTe following data cards are necessary for the program:
(a) A card with 8 random integer digits in columns 1-8. "lds• is

always the first card of the input data deck, and is required to

initialize the random number generator.

1. The oaly Wdido•no QeU Y ut iv e fost of tW inpw 4.ma.
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(b) A card with "FINIS" in columns 1-5 as the last card of the data

deck.
(c) In between the previous two cards, separate packets of !'t.,

cards, one for each array. If an array is to be analyzed w the
random mode, the first card of that packet must c-tain the
number of random tries (atf integer) to be carri,- out in
columns 1-4, and the work "RANDOM" in coluinns 9-14. If
this option is not to be exercised, this card is mne!rely omitted.

The next card (therefore the first card for the one-time-only
option) contains the number of rows (integer) in columns 1-4,
the number of columns (integer) in columns 5-8, and the name
of the array in columns 9-80. This is followed by the cards
containing the array proper.

(d) As many packets of cards for individual arrays as desired may

follow each other. A sample data deck for the card input
version is shown in Fig. E-2. (A deck for the tape input version
could be identical except that it would not have the cards with

the arrays themselves punched.)

-L-o
0

8234 0795  -0.RANDOM NUMBER
3 5SAMPLE DATA -*-HEADER CARO, ARRAY I

1.0 3.0 0.0 0.54 11.3 )
8.4 2.7 6.11 12.04 18.1 ARRAY I
0.0 14.0 111. 6.08 1.0

10 RANDOM -4-RANDOM CARD, ARRAY 2
"4 2MORE SAMPLE DATA -- HEADER CARD, ARRAY 2

1.0 2.4
1.0 3.7 ARRAY 2
0.0 2.15
1.0 6.0

- 2 3MORE SAMPLE DATA -- HEADER CARD, ARRAY 3
"4.1 7.9 6.1 ARRAY 3
4.2 0.0 7.0
FINIS -*-LAST CARD

FIGURE E-2. Sample Data Deck for Cord Input Version of Moment

Ordering Algorithm
[ -.



C. "MOMENT" PROGRAM OUTPUT j
The program output consists of the following:

(1) For each array analyzed, the program prints out a complete copy of

the array as read in, numbering the rows and columns.

(2) If only a single analysis is to be done, the program first prints out the
initial value of the correlation coefficient, R, and then after each row or
column operation prints out the entire array, numbering the rows and
columns appropriately and giving the new correlation coefficient. When I
it reaches a solution, it prints the array and the message "THIS IS THE
SOLUTION."

(3) If the random-ordering, multiple-attempt option is being employed,
each time a new solution is found the program prints out the order of
the rows and the value of the correlation coefficient. When it has

finished the appropriate number of attempts, it prints out a complete
copy of the most-commonly-found solution and lists all of the solutions 3
found, giving the correlation coefficient, the number of times found,
and the order uf the rows for each. It then lists the overall averaged
solution, giving the ordering of the rows and columns, and the average U
position (with the RMS deviation) of each row and column.

(4) If the program encounters an unstable array structure (i.e., one in
which no solution may bc found, but rather a cycle of states occurs
which will repeat itself indefinitely), it takes that as a solution, but first
prints the message "THE FOLLOWING SOLUTION IS NOT
STABLE."

I
I
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MOMENT ORDERING ALGORrrHM PROGRAM

PROGRAM MOMENT
TRACE ARRAYS

C STEPMEN DUTSCHEXT.35s,SjD
COMMON Aft 0 0 , 1 6)
DIMENSTON NARNAY( SOO 0

lmENS~ck NSILS('ýg,16
DIMENSTON mSOLM2 5,100)
DIMENSTON M(1O0)hN(16) ,HTC1'H)bNT( 16).MTO( 100) ,NOC 16

D14ENSTONJ NOLD1l1fl),M0Dt10O3

DIMENSTON RSAVElOQ)
C I AND " REFER TO COLUMN~S, ~J AND N TO ROWS

TLEFTUo0
TN~OWRCLOCKI(Ti TLEFT I
rfITLErT.LT.!(il,l GO TO 14

CALL SLIJRP(NAIWAAY,5000,0)
1$CONTINiq

RIAD ,NU
FORMATft~)
RAN. aaA A" I 1I (NOUN)

I CALL A~EADZNMCMN E*NS!ZEIEXTM,NWNmC.PtlM,NNAX)
20 IF(MCr-0.11 CALL RANORP~m#Ms!ZE7NMC)

CALL CCtMS!ZE#NSIZE, M.#R

100 CONTINUlE
CALL Nil( MN,MaSIZE.NSIZEBHdTO#NTO.DN~t~bO.0TNT#TIEXT .MCI

CALL DJmPfg)
If(HC.E.iE,¶PRINT 108#R
CALL m1ai H.N,MSIlEN5IZC#JiMITGgNODw.DPO.NTNT4ILXyTMCI

O CALL DUMPIS 0a)

IPINLISTJgO.Ot) GO TO 9
D0 it ImtaNLIST
IFfA8S(R-JNSAV~fIII.GEEP3) GO TO It
IP(!,Nr.NL!ST) PRINT 112

112 FOR04ATg, THE FOLLOWING SOLL'VION 1S NOT STA64E*)
GO To ilft

11 CONTINUE

Go To ieft
110 CONTINUE

CALL POMTA(WSIZE.NSZZE. E.MTXY
PRINT 109

1ot FORMATI,,, THIS 1S THE 50601001*
GO TO i

2 I?fNUHl.(O.6) GO TO 10
Do 4 Il1,Wsmu
PF(A82t~sROLDtIi.LT*EP5l 44 TO 7

& CONTINUE
10IrtNUMQr.151 00 To *
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NOLD(Njgimqgi

IsDO 13 TuI,NSTZC

13 NSOLSIM~jw,I)wN(ZV
5 PZjRINT T~,mMrE

PRJ'NT 4;P
4 FCRMATt4w. Ra V1,S

21 1F(NMC.GE.NMAX) GO TO A i
GO TO 20

8CALL MXLUDSZ*SDPIl1,SL.SL5~L&OONC
GO TO¶

$U8I4OUTIN READI'%(MCeMSIZC 4SIZE. gxytNeNaMCNUMNMAX)
COM40N A(100i,.

DATA(ZDAkW6IRANDOM)
MCU 0

2 FORMAtI??4,,A.)

I'(IRAN.EO.IEXYI1)) GO TO I
DO 4 I1*5,SIZC
READ 5,tA(Ij,J).JI.SIZEi

4. CONTINuI
S FORMAYIIAtS,?1

00 7 ZIsiMSIZC

CALL PPZNA(MSIZE#NSIZE, 1Nsi4mT.NT#.XxT1
PWINT ¶1. Zj XT

II VRMA Yt HiO S OLUYZONSiK,,A64ei
RETURN

END

SUBROUTINE RAI40ROI,4MS"SZE #Noe I

DMENSO N 1'(1.00)

10 ONT INut
CALL Sbmt*IRA4SsMM.SZtsI)

E NOLDNC

COMMON att00.Ie)

~Mg~4Io~i wxIO114



OIMENS!Oe NSOLS(29*10O)
DIMENSION NSOLS( 25.161
DIMEN5?tN VfObV(O POERUU
DIMENSIONJ QOL~fi0O),NOLDlO1)
D!mENSTON TEET(9)eMTf1DOsNYh14),DMO(MSIZE),DNDtNSXZC,
D!MENSTOA. NXt14)

12 XSOL81
IFINU4.LT.2) QO TO 26
DO 22 7U2.eNUN

22? (NOLrtIS,2T-h~OLD(XSOL)) ISOLaI
Z6 "Zee

DO 33 !gIMS!ZI
33 KIuaOSyoL!

Do 34 Im1iNSZZE
34 N~fZ)8N50LS(yS8L.I)

CALL PDP4YA(NSZENSIZENXNxmT.NTDZCXTI
PRINT .5

35 ORMAT(,/ý# THIS IS THE MOST COMMON SOLUTION*)
PRINT 13,

I3 FORMATj 1* SUMO~ARY'/¶X.,AGý/AN,.P.,6K..tzNES FOUNV~ WO OROEWN-i

DO 25 !u1.MS!ZE
25 Or~Of).[O.o.) MZSMZ.1

DO 23 I~ml,NUM
00 24 Ini.mSIZC

CALL SORT2(MV,PTN5IZfcv.l

DO 27 Xumd.WLQ
*4VAL.I4SOLSIISOL #mTtI))
ZF(MVAL.Lt."LO) MON.NOgt.1

27 I?(m'"ALGt.'.Il WGMO'ws4O

"NVAL "4SOLI IISOL, N7 I))
ZIFmVAtI. .LEMLOl "04.MOW.1

D0 29 le'll"S!ZE29 ?TffSOLS(Il,!).GYTZ LSZ.-eSM.*,-e0LgV
Do 31 ?l*'Csrff

CALL IONT11Mu.NTMSTIC,.11
31 PRI!NT

13 COu~NYAug
PRINT is

15 ?0IMATrWO. AVtRA910 SOLUTOA.,u, ROW AVENAGE DEVIAZ~h*

DlNo160,6l9



AvEt nwO4; 00 16 Js.1,NUM
AKNMSOLIS(Js1)

16 NORDER(Il.!

00 la ~Jw',NUM
AXOMSOLIS(JoI)

18 DEV(I3U?)EVtI.*AY*(AXUAVE(I l*2#AZ

CALL SO6?YlfAVE,NORDER.'SIE*,1)

PQ NT 2O,N RDE !,,AVE(I3,OIV(NJ0RDEiaIIII ~~~ 20 FORMAtY1.?pt,200,2)N/~. CL. AEMQ

19CONTINUE
PRINT im

DO 36 I.1,NSIZE
AvE(nwO.0
DO 36 jutsNUM
AXNNSOLS(.J.II

AVE(IIlAVF(I)*AX*Ay/AZ

DO 41 I.1,NSIZE I
DEV(I)w.O
Do 39 Ju1,Num

AXONSOLS(JpI)

39 DEV(I)uD!VII)*AY'(AX&AVC( 2) )"2IAZ
41 DtVI I)sloQT(oEv(Ij)

CALL 30RTlfAVE#NORDER,#jSIlf,-1)
DO 4ft !.l,NS!ZC

30 CONTINuE

21 roImATiioi,
E NDIl

SUIROU?!N; PAZNTAfMSIZZ,NS2!E, N.N,isbTjIEX?)5
COMM4ON A3610,14)

DIMCNS* 4" ItiT19)

(I!, I)otl
CALL AOTI~KMIE..

DO 5 to.N1,tdI9

CALL ShtN.T~Z.1

DC100Ii.St POPII
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100 CONTINUE

200 FORMATflN0.7,16#167.3)

E ND
loSUBROUTINE MiDt MNNMSUCZftdSXZIR.MTONTO.DM,DI1O.MT,AT,ICNT, MC)

COMMON A(M-if16
DIMENSION MX~iOO)
DIMENSION Mi MSIZE) A INSIZE I #mT I SIZE ),NT INSIZE I
DIMENSTON NTO(aOSIZE),NTO(NSIZETDM(MSIZE larmO1WSIZC)

7 DOmCNSToAS !TABLEt16bltlr(lOOD .MTSAVEfiOCI .IEXY(91
EPSmi r.*5
00 3 i.1.MSIZC

NTfI)umlz

CALL T08?2fMx#MT,MSIZE&.11
D0 5 !'A.NlIZE

MXN(I)*utl

? CALL S6PT2(MENT#NSIZC1 -lI

1'0 MTOfI)*wT(!,
DO115 J.1,NSIZC

00 20 !Ts'iMSTZE

x1so0.
DO Is JislNSIZE

XNEJ

X1UX1'XN*AIMT(Z)*NTcR))
19 ClKT!NLJE

20 CONTINUE
DO 12 !14.1MSIZE

12 DmO(MTfI3ImDM(T)
CALL CIDFEfDM#MSIZC,MT,M,MTS)
QBESTN-2. 0
KIKuMSI7EUI
DO 21 !uIANK
ITCIE(O'

21 CONTINUE
ITIC (Ng1 Zgloo
N4TIEDmi
zoo

22 1.1*i
ZFtIYl~tql.Nt.0)QO TO 23

IF(NIVD.E.I)O TO24
IutI.mr.KM~ckO to as
00 TO 22

23 NTZCDNNY?(D.1

24 ITASLEtIlso1
IFINTI(D.&T.91 PRINT 34
IFINTIEDA.IT., NYIE059

34 FORMATI*MOPE ?MAN 9 Raw$ of COLUMNS TIED WHILE DOING A690IITNO, F
1145? I IN TM WERE BCORDECgO, OTHERS LO T IN OLD 030(3"l
DO 27 Ilsi;MSIZC
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27 M70(iIlemytti)

NrACTvI
DO 28 llalNYZED

28 NVACT@NFACY.IZ
Do 29 T!Si.NFAcT
CALL PERPMUC(NYICEA.ITARLE)
Do 30 jimi.NT!!D

30 MT(-T9* jm(-TIDTBE0
DO 31 jjei#MSZZE
mK(JJ)SMTO(.JJ )

31 mjJ~J~njj
CALL 3opT2(MX,",~'SIZE#,

4 )
CALL ecCmS!Z[#NSIlE, M;,N , 2I9
Ift R .Ly.(mRCSTW.EPSflGO TO0
RSES Tail
DO 32 Jju1ni SIZC

32 M?SAVE((jjjMTOfJJ)
29 CONTINUE

DO 33 jjm1,NSZZE
mT( JjlvmTSAVE(JJ)
MX(~JJ~um?5AVF(JJ)

33 mfJJj)ojj
CALL SgRY2(mXem#MSIZE#,1I

Ip(I,Ly.xKK)O TO 22j
25 R*SBES?

TIr(; . iJRET URN
PRINT io;4fET#NT

Do 100 ImiNS!7E
PRINT 20Mc',AM(hq)~m,5~IDON()

100 CONTINUE3
200 FOAMAt~jm4o.T2,14F7#3#F9*21

RET URN

SUBROUTiNt NIO 4NM!KU1ZDY,?,N0OTNZXC

DIMENS!94 P4MS!U E ,N(NSR!E) ,NT( WIZZI) ,P(NSIZC)
DIMENSION NDNIE#ONSZE)?ONfNS2!j) DNOINIlzZCl
DIMENSTeN !YAILE1161h1tIE(HOASV( O1#IEWT(9l

D O S. .E,5tm I

3MYf IuI'! CALL ~lY~MX~m#NSIt~I,

DO 5j,>~.~



Xl6Xl*XN*AfMT(I)#NT(J)l
Is CONTINUE

20 CONTINUE
00 12 Ia1,NSIZE

12 OAIOW(NI)aMON(I)

CALL. ORDEREDNNsrzE,NT,N,NTOI
ROES Tm*2.0
XKINSIZE-i
DO 21 Iuia~lKI

IF(DN~fNT(I)).EQ,DNO(NT(J)))ITIE(iaIU
lF(DNO(NT(T))2.EQ.O. I ITTEE! 2.0

21 CONTINUE
ZTIE(NSIZEUao
NT XE flu

22 191+1
IV(ITIEri,.NE.CoGO TO 23
I~fNTIEO.NE.A)GO TO 24
IP(I.QE.XKlQ0 TO 25

23NjIEDxN*IEDj
GO TO 22

24 ITABLCE,)u.1
IP'(NTIED.&T.9) POINT 34
lIt NTZ!O.aY~q) NT!ED89

34 FORMAT.*MORE THAN 9 ROWS 04 COLUMNS TIED WHILE DOING Al.GORITtMM. F
1IRST 9 IN.YIE wERE REORDER(Ot OTmEAS LEFT IN OLD ORDER*)
Do 27 llul,NSIZZ

KBESTs.2. 0
NACTv

DO 28 TImulNTIED
28 NFACT8NFA0YT.!

DO 29 IIut,NPAcT
CALL PERMUTE(NTIED#ITABLEI
DO 50 jjni,NTItD

;0 NTO(I9J7I!DTgJmJ)2T(IwNTIEO4ITABLEIJJII
DO R1 JJ.1,NSI!C

31 NgJJlvjj
CALL SORT2(MX#NNjIZZE~slI
CALL CimlIZtNSIIE, MNS

IILTRSST.PI)GO TO 0 9
RIES Tur

j 32DO 32 ~ju1.NSZZE
32NTSA V~ IJJlw NTOIJu'l

29 CONTINUE
Do 33 ijalNSIZE
NTIJJ)eNTSAVCIJJI
NEC IENTIA VEN0JJ

13 Nfjjlujj
CALL OI TIUME.N#NlIZZE,.12
N TIED. I
ZP(I.6TKKIQO TO 22
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25 RuROEST
IrR.V.-.0)CALL CC(SIZ9A.'~SZ MON*R)

Vlý IF(mC.C 0.llRETURN
PRINT 1O.!EXT NT

to FORP4AT(1 .q9Aei'4 '4, 2/ l!7H
DO 100 jai MSIZE
PRINT 2~ tOMT(Ils (A(MT(!? ,NT(J2 ,1siJ.#SIZEI

t00 CON T INUE

200 FORr4ATjNO0,12sitF7.3)

PRINT 200,II*(nNO(NT(j)l Wu%#NSIZE )
RET URN

SNUBOTN ORDER(D#MSIYE.MTIM.MYO) I
COMMON A("0O.16)
DIMENSION MX(IOO'i
DIMENSTON D(MSTZE)sm~tMS!ZE)bN(MSIZE),tQNTlSZZE)
CALL SOQT2(D,NTO,MS!ZE,-i)
DO 60 ISI.MSTZE

SWBROU?!NC CCfNSIlEtNS!ZC, H*7R

COMMON Afte00.14

DIES X L!ST(IOCIhYLISY(l a)I

SspXv0.

XLNUNS!7r

XLMUI, V ELM
%hlNI, #XLN

I YLIST(J)OX.XLN
Do 2 z.1.wslzc

DO 100 Tai,'qSXU

DO 100 ,joo*NSIZE
ZINYLTST(J)

YpPuACT,

SMSPXnpxyixptZZI
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SF(POX.Npx.Sx.) SPD/R

ENDIENIt
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APPENDIX F

THE MOMENT COMPRESSION COMPUTER PROGRAM
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THE MOMENT COMPRESSION COMPUTER PROGRAM

A. INTRODUCTION

This Appendix describes the computer program MOMCOMP which implements the

gradient algorithm in Chapter III of Part II. The main program logic is shown in the flow chart

in Fig. F-1.

B. DATA RESTRICTIONS

The program can handle an indefinite number of non-negative matrices, each up to

75x75 in size. The data packages for successive matrices are stacked one after another.

C. FORMAT FOR INPUf DATA

The listing of MOMCOMP includes, for illustrative purposes, the data package required

as input for the second example in Chapter III of Part 11. This is a lOx10 matrix and three
starting points are requested for the row or column optimizations.

The data input package for each matrix consists of two types of cards. The first card

type contains the three variables N. M, IRAN punched according to format (315).

Here

N number of matrix rows

M number of matrix columns

IRAN number of randomized starts for the optimization hi each
direction.(Row and column optinmizations therefore consume 2.

IRAN starts.)

The second type of data card is used to read in a single row of the input matrix. Successive

rows ue punched on distinct cards, with each card employing fornat (6011).

Preceding page blank



If the matrix contains up to 60 columns exactly, N+I data cards will be required,

namely one of type 1 and N of type 2.

D. SUBROUTINE DESCRIPTION

The portions of MOMCOMP include:

(1) Main Program, which controls execution.

(2) DATA subroutine, which reads input data. I

(3) PERMGEN subroutine, which generates randomized permutations for I
use as startinZ points.

(4) ZMIN subroutine, which minimizes the sum of either the row or
column moments, using the iterative gradient algorithm described in
Chapter III of Part II.

(5) LAP subroutine, used by ZMIN, which solves linear assignment 1
problems.

(6) Z function, which computes the objective function, taken as 5
~ I N

ri for optimization of column order

J _- ( C1  for optimization of row order I
N, 9

Z is the root-mean-square nmment arm.

] (7) Subroutines INITCOL and INITROW, which prepare the dati needed I A

by ZMIN for minimizing ZL The required data are the Ws and H's in the U
expre.sson (see Eq. 8-9) in Chapter Ill of Part I1).

Z (if) , . ,J - 1
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where L f N(M) for optimization of the column (row) order, and where

S'rI, 7r2... 7rL denotes a permutation of the L columns (rows).

E. PROGRAM FLOW CHART

Figure F-I is the computer program flow chart for the Moment Compression

Algorithm.

7 READ DATA FOR NEXT PROBLEM

(EXIT IF ALL PROBLEMS DONE)

INITCOL INITIALIZES DATA FOR OPTIMIZAfION

OF COLUMN ORDER

OPTIMIZE COLUMN ORDER BY USING ZMIN TO
MINIMIZE Z. STARTING ORDER IS GENERATED
BY PERMGEN (THIS BOX IS EXECUTED IRAN TIMES)

EINITROW INITIALIZES DATA FOR OPTIMIZATION
OF ROW ORDER

I I

OPTIMIZE ROW ORDER BY USING ZMIN TO MINIMIZE
Z. STARTING ORDER IS GENERATED BY PERMGEN
(THIS BOX IS EXECUTED IRAN TIMES)

-II
FIGURE F-1. Flow Chart for Moment Compression Algorithm

F. ERROR MESSAGES

(1) The only error message from ZMIN is that coowvrgene has not je-
curred ufter 100 iterations (each iteration is one grAdient step and
involves one linear assigrnent problem).
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(2) Five possible ERROR messages may occur in LAP:
Type 1: Step I has been unsuccessful at covering all zeros 3
Type 2: Same

Type 3: Matrix element for the linear assignment problem is negative

(should never occur)
Type 4: Step 2 fails to find a primed zero in the indicated row (should

never occur)

Type 5: Same as Type 3 error (should never occur).

G. TIMING

The following times should be multiplied by twice IRAN. !

(1) 1 Ox 10 problem consumed roughly 3 seconds for optimization of row

(or column) order for each starting point. 3
(2) 16x!6 pioblem consumed roughly 10 seconds for optimization of row

(or column) order for each starting point.

H. COMPUTER PRINTOUT

The computer printout from MOMCOMP consists of the following: 3
(1) The input data

(2) The number of the starting point (ranging from I through IRAN) and

whether the row or column order is being optimized

0)3 For each starting point, the sequence of permutations and Zs generated
by successive iterations of the subroutine ZMIN. 3

There is no attempt to choose among the several solutions obtained by varying the starting
points and no printout of "the" final matrix since this is generally non-unique. The user must 3
extract, from the printout, the row and column permutations whikh minimtize lheir respective
Zs.

The conmuter output must be interpreted as follows. It -the row permutation is printed
as t(l),... ,r(N), then the optimal reamngement has, as its w(i)th row, the ith row of the
input matrix. Tih u=er is reminded that the permutations ( r(1).. (N)l ar-A
[N+l-i( I),.... ,N N-w(N)j are equivalent, each being the other in reversed o-ter.
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MOMENT COMPRESSION ALGORITHM PROGRAM

10 10 3
PROGRAM- POMCOMP

*C P.SCh4WF!TZ7R X314
* ~COMMON

DIMENSTMIJ TPVI4Md 00)
C INITIAL17E RANIQm NU$RFR GENFRATOR

Xe RANANC3.1416)
C FINDS IRAN LOCAL MIN FflR RMW AND COLUMN PEPMUTATIONb'.

I CONT I NiE Nk.'T
CALL YTT.F(19417REflIN NWMTI.
CALL DATA
QE~ADS PAYA
CALL TTMrw.~9,11MDATA IS IN.
CALL ItTMVC.~HNT OONE
CALL IP.IY ,~tIN~ciOLO

DO 2n Tu.¶.RAN
Lem
CALL PAGFSKP
PRINT %0,1

40 CALL PrRtaENtI0EwmL)
C CALL TTmr(f4q,lmEP&4GEk OONE.J

C GENERATES PERmt.7A1I0N tF 1..m,STOkES IN IPEwm,
CALL TTMFt3q,4tHmIN STARTS OPTIMIZATION Or CCLUMN Uu~iEh.1
CALL ZwIVtLTP1RM l

c ZMIN FTNtrS OPTIMAL. COLL'M% PERMIJTATTON, STAOTINt 6&WOM IPEWM
CALL ?I%4lrq39 ,qMZmIN Ek-oS OPTImILATION OF r-OLUWN OWLJER*

~0 CALL PkITROW
CALL Ty~rt(49,11HINITROw DONE.)

C COMPUTFS AND NFOR QlW PER4UtTATION
DO 3n Ta'j,TRAN to

s0 FOR"ATI.PERGMEN CALLED FOQ TINE*#IS) jj~ 1Ii3III
4 .~CALL PrP'wSENftflERM-Ll

CALL YT~mftlqt1lPERmGEN D0~t4J
CALL ?T ffgl.34M?MI4 STARTS OPTIM~IZATION Or Row ONDLR.)

:1CALL ZQ!NfL,!PFRml
CALL TTm~F09.34NZmIN ENDS *PTINIZATI0M OF POW ORDER-)

-A30 CON T14 1E
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C FINDS fPPTI-AL QOW PERMOTAT!0K, STAVlING VhPnM IPEkMq
ric, To

END CI
C

SUBROUTINE DATA

COMMON wiO,47,5.I57b(57).~%NI
CALL PAGrSXP
WEAU j0Ik.bd,?RAN

10 FOOMAY(S!5)
PRINT ASP,Nm*IQAN

1!) FURMATI*K[W CASE. N,M,TRAN 8 *ý3151

C DO IA T'lN

20 FOPMATt7WI.S)

DIMENSTcV. MOO1)

kEAD 24;!f(I~j).jsI~m
21 FORMAT(6 0:il

DO0 23 jt¶..
2$ U1zfij. Tn(j)
25 CONTINuE

PRINT ,( IJ0ZJ),JUII1,N
30 FORMAT(,.4*0IOINAL MATRTX*,#I ~ DleJ */,2I50010,S)1

40 PRINT 40j
40 FLJMATf, DATA AL RAD IN 0)

END

C
SUBROUTINE INITCOL

CO:404N w 100)."H05. 75) ON T751,5Oct 75,751,IAAN#NMI
DI ENSIt~N St100)
DO 5 IstsN

3 S11) psi?)* (14

5 CONTIN'J(

DO15Ju.

00 10 181,0
ts CONTINUE

Do 3n jots"
D0 19 we1*j3

00 17 ?slam

00 3s w.j.,4
35 06"6 1 06 W11100
40 CONtINue

C CALL PAGCSWP
C POINT ,,.~s)J1u
050 FOANATu,.?aICL 0049. ,j vt41 estI1411,611
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060 FORMAY,,.j X N(~J#K) *jfl5#Fi6.4)l

C
C

C OMO

nIP'ENSIrMJ 9 0 00
Do s Imi,m'

DO 3 Jsi,N
S S11) *S(T,. lt.J,ri
S CONTINQE

Do 10 yg,im

DO .3n J8,10N

DO j7 Ili.

17 XmX#D(J,Tl.D(K,I),S( I)#*2

JO COKIVTNIIE
DO0 40 .1ml,N

40 CONTINUE
C CALL PA&jESKP

C PRINT 50#fftJ#WtJ81,slN)
CS0 FORMATf,l!NIflkMW DONE. 4WJ)/150.)
C PRINT A~ (.(N,,),SI)J1N
C60 FORMAT t ,.j H (J,&K) 2 5El.f

- 4 VOPOU?1NE PEWPUNIX'4..N)

DIMENSIO P[Rwfl00)hWflOO)

4 ~IPERm( Iu

CAL

CN

COMMON 0 .(57)oegs;c

Y 00 10 4u1.1 n

131



,I

10 CONTIN11E
Is SQQYTF(ZILOAF(#4))

WTURN
IN

C

Jr C
SUSROUTIINE ZmlktHIPEQI4,
COMMON 01,0O),w(7s,50S) 57)iC7*5,~NJ~~MD

PNT10, u!.,IPERhU~l 431-,M)
to FORMAT(/* ?MIN INIT'IALIZED AS FOLLOk'S, PERMUTATION*1(21511

PQINT I5.Zh~w
s~ FORMA~t*ClqjE!TIVE FCNu *#E2 0 .81

20 DO 20 TO¶ m
20 NCwPER(zlm IPE~mfl)

DO 100 LLLai,100
c CALL ?T'"c'q.2AHZMIN BEGINS ONE ITEATION0.

LLvLLL
c DO UP To iOo LOOPS Of ITERATIONS

2 D O 21 Tilm
21 ICUQPER(Tis NEwPfR(I)

ZOLDs 7'jFW
C GENEVATE C MATRX

DO 25 jmjM

23 VIJ)x vEj).2.*w(J,K)*FLOAYF(ICURIJEQ(K()
2S CUINTINvE

DO 30 Jni'm

28 ChJ&K)a w(,J)*FLOATF(K)**2# Y(J)*bFLOATF(A)
30 CONTINUE

ILR LAO( k,NCwPCRD0E4ji
It (TL.Fn J1) RETURN1
ZINEhe 7t'iNEwPER)
PRINT 40.LL*ZOLD#ZNEw'

40 fORmA~tt V~IN ITERATION NUmlEW *sI~3s*,OLD ANDj NJEw 0JE~CYIVE FWJCU

45 rORmATl*Nrw PEGmUYATION.,1215))

60 J(ZN~w-4OLDo 100,60,150
60 Do 70 Tal.m

JFN~rj)NrIU~2ljGO to too)
70 CONiTINvE

aO To 140
t00 CONTINJIf
150 PRINhT j6pLLI

1~o OS~At.XgR~tONSEND AT LGOP.153l

VUNCTZO6j 401B N#PEZ0EPM 9t,O

c LIN4EAR ASSIGNMtN? IPQ~eirw SOLVERWITHUl N X k~ C, C 19 DECSTROYED.,

C RgIUAN wI LAxw0 Ir SUCCESSFULY I If UN5SJCCESSFULe
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C OUTPuT IS MPTIMAL PEPMIITATION IN IBE~eSOT;,N&INIMUM OdJ.ECTXYE FCN IN Obj
DIMENSION ZPM*fllv,7ERO( S00*.JZRO(500 ),1mARj(SPOIO MCOLCOVOO),OCO1r*LST20
DImENSTnt; uqlon ),V(1ool~wCVP"LT

c CALL TTO*A3qSIOMLAP BEnINS)
SUBSO.

3 ISTEPju*3
IEPRORwo

C S~UR CIMULATIVE AMOUNT SUIBTRACTED~ FikOV A kOw OR COLUMN.C PR~INT f !JfI.),3,,I1N
Cl FORMATt27TS.EiA.7,2I5,c18.7 215, ElA.7,PI5,Flb. 7C SUBTRArT SMALL ELETMENT FROM EACM R~h

Subz S'1.6X
DO 10 Juat,~

c Sd8TQAr'T SMALL EST ELE"EkT FkOm LAC- COLljMk
On 20 jin'la
KUC( 10i)
I'O Is 7,P,N

5 X31 AM10:1 (Y,C(I,J))[ Su~s Si'a*X
DO 20 181,N

C Pk~INT ((,.(,I3JlNu.)
C STORE ALL YEPOS TN A OtcE.O!MENSION&L ARkAV. NZEWO ILIWOS,
C IKqTM ZFRO IS AT IZEQ0(K),JftRQf(K),

C MAPK(Xl' 1 Ir THIS ZERL% IS STARRED, a.1 IF IT IS PkIMED. N*J 07"Eki-SE
NZEIROuf
DO 30 Tal,N
DO 30 in.
ITC(C(l~j~i 25,27,30

PRINT 26,.1j
26 FORmATt/*ELEMEkT*s2j5#*QFSEY TO iCIQO')

GOD To A06
27 NZEROu NZERO.1

IZERO(k7Ep0)a I

MARK (N~rRo
30 CONTINtuE
35 FORmATI $FERO PRINTOUT*/17,,isn
C INITIAL IZE COVERS
c mCOLCOvtTimi Ir COLUMN 1 25 COVcWcn~v IF 6NCOVENED# SIM. fTOR W~wumwmmi

C INITIALI7E STARS
NST AR&A

C NSTA~m NUMBER OF SYARRFD WNRIES
DO0 INITIAL STARRING BY SUreeSSIVELY CNOOSING ZEROS wNICH N4AVE YELEAST

C NUMBER OF OTWED ZEROS IN ?WE COVW4EDCE PORTION OF EIli'iE QOh, OR COLUMN.
C TwEN CMVE'k TWAY ROW OR COLUMN.

200 oo Isl.N

iO@ mCOLCOvtIjuO

HINLIN~opeN
mYNSUuv4*N

c Ai END of PASS, ICOVERSO AE40-S ALL ZEROS ARE COVECVC. ICQVfR POSITIVE
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C MEANS I'Ne'OVREt, ZFROS VXIMT AND LmaEST IS ?ME mEST OF THLM, HAVItKS THE
C VEStTLN OTWEQ ONr0VvERE ZEROS IN ITS WrnW Ok COLUMN.

00 2200 Ku1,NZrRO
C COMPUTP NJUMPE4 OF UNC!nVEWED ZEROS IN LINE lhT K.¶M,EXCLUDINai K ITSELF.

IFtmROwC0VfIZEQO(KflE0.l) QO To 22()u
I7(MCOLC!nVfJZEPc(Kfl-E(4,1) aO TO WOU

C K~ IS Ul-COVFRrO.

INKROWua
INKCOLmO

C INKQO~IUINKCOL)2NO, OF (INCOvSRED ZEROS INACw(COLWIN) wI'H K
Do 215n Lmt,NZrRO 21£
IF(IZEPO(Kl.EQ.IZEROCU)) GO TO210

c LIS I\' SAmE COLUJMN~ AS 9 AND L,NE.K. NOW TEST IFUNCOVERL.D
IvftmwOCnVfIZEQOfLfl.E0.1) QO TO 2150
INKCOLUINXCOL.I
GO TO

2120 IF(mCOLcnvtJ7EIO(LUEO.tl qO TO 2iSu
IF(L-E?ý.'i Gn TO 21.50

C L IS !'k SAM4E NOWd AS K, DISTINCT*# AND UNCOVERED.INKR Ow rI N O W *
21S0 CONTMIuE

INKLVFý MIND(INKROW#INKCOUI
INKSUmwTN.KROW*TNKeOL
IF(INKLINt,GT.MINLTNE) GO TO 2200
If( INKL INE-E.EOINILINE .AND. INK(SUM.QE .MINSUP GO TO 2200
MINLINrv YNKLIkE

rj ~MINSUAN INKSUN

IF(MINLTNEEO.0.AND.mINSUm.LE.1) GO TO 23uo
2200 CONTINtlE

IrFICOv~pj.ag ) Go TO 2500I
C UNCOVE0OLV ZERO AT LSEST IS NOW COVEWED.
2300 MROHCOVtIZtR0(L8ESTflUI

mARK (LPEST)BI
J ~~N STARvkj ~TAR *1

C PRINT 2450, IZEROtLBESTbJZIRO(L8ESTi
c2450 FORMATtINITIALIZATION COVCIS ZERO AT*# 2151

GO TO ?1fl0
2500 CONTINUE

StARRI~l Of ZEROS DONECcOLU4NS PIWOPERLY COVERED, LP'COVEW ROWS
40 t'ROOCOV I180

C P41NT 95#( (KI?ERO(K),JZEROIK)hMARK(K)I #KP1.NZEWOI
C PRINT AO.NSTAR
COO FORmATi *PRELIOINtRIES DONE. #I*5s*STAkI..

C IFINSTAR.t*.Ni GO To 4003
C
C

C STEP I3
100 ISTEPja ISTCPi1*
C CALL T'!WCS,,16MLAP WCINS STCP1)

!pgISTE,1.pT.100) Go to 603

11 IFLAG.a 3
ZSYEP7L a ?STKPFL*1
ZP(IST(PVL.QT,P*NZEAO) 00O to040
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C AT END OF LOOPAT 180, IFLAG 30 IF NO UNCOVEkED ZEkUS EXIST, :ND
C 81 IF POSSYRLY UNCOVERED ZF14OS EXIST. !XTNA PASSES THRDUG', TýIlS LOOP
C APPEAR TA~ AE NFCESSkRY TO E4SURE Nm UNCOVERED 7EW~OS EXIS'.

DO JAQ XRINZEQO
KKEKg

IK8 IZE~RM(K)
JKU jZrqO(K)
IF((MROWrV(IKI.MCOLCOV(JK)I.QT.O) aO TO le'l
IFLAGai
MARK (KI a- I

C 0 'WINT 12S.TX,~JK
C125 FORMAT( *STEPI P4AS PRIMED AN UNCOVELIt. ZERO AT*# 2I1,)
C IF THIEIE NM SIrARPEn ZEOO IN POW IX, G~o TO IRTEP 2. !F THEWE IS lEQO
C AT L, FOVEP TNTS POW Ak'p Uk'QVER TWE COLU~k OF L-
c WEPEAT TTLL ALL ZEROS ARE COVEREýj, TMEN GO TO STEP S.

no "aO Ll .NZEQO
IF(IZEQO(LINE.IK) GO TO 130
IF(LEfO.14) GO TO 130
IFV'ARK(L).NF.!) GO TO lAJO
GI TO 5

130 CO2NTINI-F
C PRIINT 1.1r
C135 FORMATt*SrP I FOUND NO STAWRED ZERQO IN TWIS WOWwENT TO STEP 2*

GO TO :)On
15n IBIZER'MgL)

JsJZERn(Lt
C PRIN~T I 55.T.j
CS5~ FORNATt*5Y(P 1FOUND STARRED ZERO IN QOw'. AT 21$

MQOwCovT ~m.
MCOLCOv ej~ .0

* IFLAGsi
180 CONTINtuE

IFrIFLAri 190.190,195
190 CONTINiiE

C OPqINT 191,!STEPFL
I191 FOQMATf *STEP I DONE TN*#I$** iASSES, OFh TO STLP 3.*

Go TO A
195 CONTINuIE
C195 PRINT 19A,!STEPFL
C196 FORmAT(*STrPl I'NIjONE AFTER*PIS& P ASSES, WESUME.*)

GO TO 101
C
C
C
C
c STEP 2. My KPIU 1.MUNKRES K
C LIST(Jp CONTAINS THE NIIMAEQ OF ISUR(J.11
C AT 210, STEP2 ASSUMES 7S1'8(KP1) EXISTS AND SEARCUCS FOR ZSUB(KPI4I3
200 KPIal
C CALL TTMF(39,16MLAP BERINS STEP#)

LISTtlim Kw
210 .JTCSTw JZERO(LIST(KPIHl

Do 220 Lst#NCRO
IrtmARKILI.NE.1) aO TO 220

Fh(JZEQOlLl.fO.jTEST) 40 TO 260
220 CON TI NtI

-C SCOUENCE WAS TERM1NAYCO.

c2 21 FORIAATto/*PERO SEOIJCNCV FOR STEP 2*o1415Ii
C STAN 00ImES TN SrOUCNCE, UN'STAN STARS IN SEOVENCE
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00 23 NXM,1,KPt
22 IF(MA(KLET(Nitfl) 222,230.2251
22 mARK(Ly5T,tINKf)lg

GOC TO 73 M
225 MAPK(LT9T(*NK))v
240~ CONTINIIE
C EWASE ALL PRIMES* UNCOVER ALL PONJS# COVEk EVERY COLUm.N COilTAINING
C A STARPEO ZERO.

U0240 TstN
MCOLCOVtTlw0u

240 MRO'wCOvalsoI

DO 250 (.jNZERO
IF(P4ARW(KI0422,250,245

242 MARK(Kiso

GO TO 7s6

NSTAQ8 NSTAR.i
Ný250 CONTINij[

C PR~INT 7551 NSTAQ
C255 FORMATt *STrP 2 HAS TERwINATED NITH .,15, *STAWS*)
C PRINT 95,(fK,I7ERCtK),j17EROtK3,MARXKI) 2KS1,NZFROI

VC PRINT M25,1tT,MROWCOV(IhmCGLCOW(IflIul.kI
IV(NSTAQ.CO.N) 0O TO W~

LIST(KPlia L
ITESTs IZ[QOfL)

C A PRIP4UD ZERO IN ROW ITESY IS GUARANTEE0 YO EXIST,
00 27o Xuj,NZERO
IV(MARKfI),NE.-l) GO TO 2701

L ~IF(IZEP0ofKiE.ITEST) no To 6
270 CONTINUE

to TO goi
280 K01a KP~jj

LIST(I(Plil K

Go To 21n

C STEP 31
300 If(NltTAR,C0.N) GO TO 400
C CALL TII4F(39.iAMLAP 9EOINS STEP5)

C LESS THAN N INmEPENDENT STARRED ZEROS
C COMPUTr W, THE MINIMUM UNCOVCERE NUMBER, IT IS STERIL.TLY POSITIVEt
C ADD ý To fACw COVERED ROW, SUBTRACT X rROP EACH UNCOVERED COLUMN-
C PRINT 120.NZfRO
C320 FORIAAT(*StCp 3 BEGINS WITwss ISs *ZEROS, *I
C PRINT 32gt(ImOwCOVfThMCOLCOV(IlZoleNoh1~ C325 FOAMATteCOVER PRINTOUITWI?))

DO 351 !U1,N
!IrMAOwCOVfI)hCO, 1) GO TO $51
00 350 jol,N

XwAMINý O 1
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If(x.LT).n, PW7NT 370
370 FORMAT(,iW!EP 3 EQQOR. MINIMUM UNCOVERED? ELE4EN1 NUN-PO'Z1TIVE*)

IF (X.LE0.). GO To 602
DO SRO I2¶,N
IrMQWC0~Vu,.EQO) GO To 36
SuRs S118.1
DO 375 jxjN

375 C(I,.jlu C(T,%J)*X
£80 CONTINOE

DO 37-0 J*J,N
IV(MCOL~f'V(J).EQ,1) GO TO 390

DO SA5 yai#N
£85 CfIJl a IC(II~f@x
39q' CONTINUE
C DETE TE TWE ZFW'MS WHICH BECiNE POSITIVE.* TWE SE AWE VkE CISLLY THL
C TaICE-r.oVRECE fEwOS

Koo
£900 K*K.1
3901 IF(K.al.NZERO) GO TO 3920l

Irt(('RswCov(IZEQOfK)'4mCOLcOV(JZEROcKi)). kE.2) GO TO '9U:
C PRINT jqm5,IZEQO(I(),j?7QOI'e)
C39 0 5 FOP!AAT(, STEP I nELETES ZERO AT *, 21S)
C T)ELETE K-?T' 7EQOi PUTTTNq LAST ZERO IN. TH~IS SLOT.

IFtK.EO.h.ZEROI GO TO 3950
MARK(KI)a MARK(NZEPO)
MAOK( NZErIO).0
IZEROt'f). IZER14(NZERO)
IZERO(,7IcRn)20
JZERO(wju JZrRO(NZERO)
JZEROVk7FRM)w0
N ZEQO w -7r Q 0 1
GO To Ign

£9J0 MARKfNZ.Iw0).f
IhERO C 7ERO .0
JZERC '7rROW.
NZEROu Nj7EROml

.3920 CONTMINE
C ADD ANY NEW ZEROS TO LIST. TwESE CAN ONLY PE IN ThEE UvCOVCRED AkEA,
C SINCE ALL ?EROS ON O.S? AR~E COVEkErl.

00 395 T~i.N
I?(MROWCOV(11.[G.1) GO TO 4~5
00 394 je1SN
IP'(m(OLCOVfJ).EO,1 l Go TO 394
If(Cil,jni 392,393,394

392 Clfilo).0

POINT 2611.1
393 'JZfROmN7VqO~b

IZEROgkIFQO0.I
JZEROtkFRqO'. ,J

* * MARK (N9FUo)sO
$94 CONTINIti
395 CONTrN,'t
C PRINT 194 ,NZEQO
C 396 FORMAT( WSEP 3 DONE. *.Z5,' *?EROS IN PA1RIX,*)

U ~~C PRINT 1~ZJCZJh.~,UJ

* LC PRINT
GO TO 101i
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cU

c
C

C DON~E N A STARS EXZqT,
400 08iu SjjR

DO 410 IU.
41 IPERNO~TI'g

00 420 WRINZERO
V'(ARXK~b).NE.t) GO TO 420

420 CONTi~iE
C PRINT &A~g
C430 FOWMAT(*LAP SUCICESSFUL. OBJECTIVE . ,E 2 0,8/1. OPTIMAL OLACE Fo

C PRINT d4n,t(T,rPFkmOTjT1, IUl#N)
C440 FORMATI2TS) .
C PRINT ¶ft,.(h),u.)I1&~

LAP80
wTURN

C

C ERROR wESSAGES
00 IERPORs ERO#

601 IEWROR. !!ORW~14
602 IROzTQn~

*603 IERRORs !CQRI)R*i
604 ERQ t;M~

*620 FURMATt.LAP fQQOR OF TYPE* #15)

QfTUQN
END
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DISCUSSION OF MEASURES OF EFFECTIVENESS

A. RELATIONSHIP BETWEEN PLEASING PATTFERNS AND MEASURES OF

EFFECTIVENESS

The ultimate goal of any data-organizing algorithm is the discovery of an informative

pattern of variable relationships, as evidenced by a pleasing matrix appearance.

Quantitative measures oi effectiveness are used as surrogates for pleasing patterns, since

the latter concept is an intuitive one not easily described in words. The two MEs used in this

report, the summed bond energies and the summed moments of inertia. %,-re chosen with the

hope that they would produce pleasing patterns by creating dense blocks of numbers. No

doubt other MEs can be devised for this purpose; the two proposed here are useful because

they are both (1) amenable to simple algorithms for approximate optimization and (2)

successful at producing informative patterns. Any other useful ME tust share these two

properties.

The algorithms used for optimization of these two MEs (the sequential selection

algorithm for the bond energy ME, and the gradient algorithm for the moment of inertia ME)

are suboptimal, that is, they do not rigorously optimize their respective MEs. Neither

algorithm should be faulted for producing suboptimal solutions, because the ultimate goal is

producing informative patterns, not rigorously optimizing the ME; the ME is merely a

surrogate for measuring the pleasingness of a pattern. Indeed, the satisfaction with the two

algorithms is based upon their proaucing data orderings which are informative.

It often happens that several appealing data arrangements exist, all with approximately

the same ME (namely, near the optimum), and all very similar.

Consequently, ties or near-ties among the ME can only be broken by a subjective

eyeball judgment as to wLich data arrangement is most pleasing. Until the eyeball judgment is

made, the tying and near-tying configurations must be considered equally aceptable. For

"example, the five solutions in Table 2, or the four solution matrices in Figure 30, and the two
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solutions in Figure 28 must be considered equally acceptable. It is highly arbitrary to choose
one over the others on the basis of the numerical value of the ME.

In short, the ME is useful only for the first-order task of locating a handful of good
arrangements. The ME is not useful, except in an arbitrary way, for the second-order task of
choosing among the good (and nearly equally pleasing) arrangements.

B. GENERALIZATION OF THE BOND ENERGY ME

The bond energy ME can be generalized to include bonds between matrix elements
which are not nearest neighbors. For example, a ME which weights the bonds according to the
hiverse square of the distance between the matrix elements (so-called gravity model) would be

,•, aij arsME ° U

ii rs • i (i-r)2 +( s)2

It may be conjectured that such generalized MEs, when optimized over all row and
column permutations, are more successful at producing tightly clumped matrix elements than
the ME used for the Bond Energy Algorithm, which involved only nearest neighbor bonds.
There are two objections to the generalized ME, however. One is the significantly greater
computational difficulty in optimizing the ME over all row and column permutations. Once
the nearest neighbor feature is abandoned, the sequential selection procedure described in
Appendix D cannot be used.' Even more serious is the fact that whei, diagonal bonds are
included in the ME, it is no longer possible to optimize the ME in two passes, one which
optimizes the row order, the other optimizing the column order. Instead, one would probably
have to iterate, as in the moment ordering algorithm, between row rearrangements and column
"rearrangements.

1The second objection to a generalized ME which includes diagonal bonds is that, for
sparse matrices, optimization of the ME may result in numerous bonds being attached to the
large matrix elements, thereby actually destroying the pleasing pattern. An example of this
phenomenon is given by the case

i= I l 01 0 l1-2•d I 1 0di = 5000
0 0 500 0 1

Note that row and column permutations can transform dl into d. Since d is in block form, it
conveys more information about the group structure and is preferable to d 1 However, it any

4" 1. This ptocedtuc can be modified, Nowcves, If the gnualUa MW Inewd only wo.lh and w, "Uma-bndo oft .
not necaiuflfy u•awa n*hbw). and Luk dbga bonds.
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of the three following MEs (which allow next-to-nearest neighbor diagonal bonds) are used,
then d1 is preferable to d. Evidently optimization of the bond energies leads to the attachment
of as many (diagonal) bonds to thr "500" as possible, even at the expense of block form. By
contrast, when the diagonal bonds are excluded, optimization of the ME will produce block

form if this is possible. (See Appendix B.)

The three MEs are

ME1 (b) = ijaij

ME2 (b) = aU ci

ME3 (b) = ai ij

-•, I biu> O
where i U

S0 bij= 0

1a ai,j + 1 + ai, j-I + ai+ lj +ai- l,j

+ l/2[a,+lj+ 1 + ai+l 1 I + aiIj +l + ai-Ij-I]

ti •i 6 i,j+l +6 i,j- + 6 i+l j + 6 i-l j

+ 1/2 [6i+ I +,I+ Si+l I + ii- l:j+I + 6i-l,j- I]

If any of the three are used, then dI has a higher ME than d:

ME, (d) = 510 ME1 (dI) =1002

ME2 (d) = 510 ME2 (d1) = 2000
w ME 3 (d) 260.5 ME3 (d1) - 1002

C. ADDITIONAL PROPERTIES OF THE MEs

(1) All three algoritlmts are unaffected if all the matrix elements are

multiplied by a positive constant.
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9

(2) ldl three algorithms are affected if a constant is added to the matrix
clement. In particular this implies sensitivity to the choice of origin of
the ordinal scale (e.g., 0,1,2 versus 1,2,3) when rankings are used as the
matrix elements. 4

(3) The sensitivity of the Bond Energy Algorithm to the choice of k
depends on the relative magnitudes of the various matrix elements. If
all the matrix elements are 0 or 1, then the ME is independent of the
choice of k. If, however, the matrix elements vary greatly in magnitude, [ •
it is recommended that k be set equal to 2 instead of '. This choice
preserves scale by not overemphasizing the largest elements. For
example, with k = 2, the bond strength between elements of sizes 5 and
7 will be the I-5, close to their average, rather than the inflated value
35whenk 1. 1

AI I
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APPENDIX H

A MEASURE OF EFFECTIVENESS
FOR THE MOMENT ORDERING ALGORITHM
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A MEASURE OF EFFECTIVENESS

FOR THE MOMENT ORDERING ALGORITHM.

It has been pointed out that one of the properties of the algorithm is to drive the array

being operated upon toward a more diagonal form. This property has been utilized to define,

a correlation coefficient, R, to measure the progress of the iterative procedure and the quality

of the final result. The coefficient has been defined as follows;
Sxy

R =
SxSy '

M N
where S2  = 2

x l 1 j~l

M N

y T- I jj l
M N

x T i- l at j x

M N
T =I N=

M N

T..... .1=... ajj

xi = i/M

i/N

aj= dlement in it) column and jth row.

1. SuSs•loa duo WD#. MftWlP Gould o IDA.
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Note that R is normalized so that its value always lies between zero and one. For the special
case of z square matrix R1 corresponds to only the main diagonal being filled, R=O to a
random distribution of value throughout the array, and R= -i to the opposite diagonal only
being filled. Initial values of R for arrays therefore are generally near zero, and as the algorithm
proceeds toward a solution. R generally increases. The final value of R is a measure of the

degree of diagonality obtained by the algorithm. It should be noted however, that the
algorithm is not a direct attempt to maximize R, and that there are occasional cases in which
an iteration of the algorithm will decrease R instead of increasing it.

18.1

5~ .4

-1I
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MULTIPLE SOLUTIONS TO THE MOMENT ORDERING ALGORITHM

FOR A SAMPLE 3 x 3 ARRAY.

In order to investigate the factors which lead to multiple solutions to the Moment

Ordering Algorithm, the following experiment was carried out. It deals with a 3 x 3 array, but
it is believed that the conclusions drawn may be useful in understanding the phenomenon for

the vastly more complicated cases of larger arrays.

I. A sample 3 x 3 array (Fig. 1-1) was constructed. For simplicity, its rows were

each nomalized to 10. Two.of the rows were fixed (7.2.1 and 3,5,2), while the

elements in the third were allowed to take on various valu, ., (ýalways subject to

the normalization and the restriction that all elements be non-negative).

A 7 2 1
B 3 5 2

SC X Y Z
I - 13-6y-4

FIGURE I-1. Experimental 3x3 Array

2. For every possible combination of values for the elements of the third row. the

resulting array was analyzed. In particular, the number of possible stable
solutions was determined.

3. The results are presented in Fig. 1-2. Every point inside the triangle represents a

possible third row of the array. The values of the three elements are read

4 upwards from each face. (Note that the sum of the distance from any point

inside to all three faces of tlte equilateral triangle is constant-in this cmse equal

to 10.) The sets of elements corresponding to the first two rows are marked as

A and B, and for each other point the multiplicity of solutions to the resulting

array is shown.

4. The resulting overall pattern indicates that when the third point is colinear, or

nearly so, with points A and B (that is, when the three rows are in a
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well-defined order within the coordinate system of Fig. 1-2) only one solution

usually exists. However, in the region in the lower left hand section of the

triangle, where the third point forms a triangle with A and B, rather than a

straight line, three stabie solutions exist. This indicates that, when one specific

linear ordering exists, the algorithm will find that ordering, but that when

several orderings are equally satisfactory, it may find each.

Y 10
C

ONE SOLUTION EXISTS

TWO SOLUTIONS EXISTF THREE SOLUTIONS EXIST

Zl

t |

IFI
V.,
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